Concept explainers
Obtain the equivalent resistance at the terminals a-b for each of the circuits in Fig. 2.115.
Figure 2.115
(a)
Calculate the equivalent resistance at terminals a-b in Figure 2.115(a).
Answer to Problem 51P
The equivalent resistance at terminals a-b in Figure 2.115(a) is
Explanation of Solution
Formula used:
Consider the following delta to wye conversion, when all branches in a delta consists same value.
Consider the expression for
Here,
Consider the expression for
Calculation:
Refer to Figure 2.115(a) in the textbook For Prob.2.51.
Step 1:
In Figure 2.115(a), convert the wye connection into delta connection.
Substitute
Since all branches values are same in a wye connection that is
Modify Figure 2.115(a) as shown in Figure 1.
Step 2:
In Figure 1, as
Step 3:
In Figure 1, as
Step 4:
In Figure 1, as
Modify Figure 1 as shown in Figure 2.
Step 5:
In Figure 2, as two
Modify Figure 2 as shown in Figure 3.
Step 6:
In Figure 3, as
Conclusion:
Thus, the equivalent resistor at terminals a-b in Figure 2.115(a) is
(b)
Calculate the equivalent resistance at terminals a-b in Figure 2.115(b).
Answer to Problem 51P
The equivalent resistance at terminals a-b in Figure 2.115(b) is
Explanation of Solution
Formula used:
Consider the wye to delta conversions.
Here,
Calculation:
Refer to Figure 2.115(b) in the textbook For Prob.2.51.
Step 1:
In Figure 2.115(a), convert the wye connection
Consider
Substitute
Substitute
Substitute
Modify Figure 2.115(b) as shown in Figure 4.
Step 2:
In Figure 4, as
Step 3:
In Figure 4, as
Modify Figure 4 as shown in Figure 5.
Step 4:
In Figure 5, as
Modify Figure 5 as shown in Figure 6.
Step 5:
In Figure 6, as
Conclusion:
Thus, the equivalent resistor at terminals a-b in Figure 2.115(b) is
Want to see more full solutions like this?
Chapter 2 Solutions
EBK FUNDAMENTALS OF ELECTRIC CIRCUITS
- 3. Consider the RL circuit with a constant voltage source shown in the diagram below. The values of the resistor, inductor, and input voltage are R = 100, L = 100 mH, and Vo = 12V, respectively. Vo - Ti(t) R w When the switch closes at time t = 0, the current begins to flow as a function of time. It follows from Kirchoff's voltage law that the current is described by the differential equation di(t) L dt + Ri(t) = Vo⋅arrow_forward4. Consider the RL circuit with a sinusoid voltage source shown in the diagram below. The values of the resistor, inductor, input voltage amplitude and frequency are R = 5, L = 50mH, and Vo = 10 V, respectively. The input voltage frequency w is variable. Assume that the circuit has reached steady state. Voejwt + ↑i(t) R سيد The input voltage can be described using the complex sinusoid function V(t) = Voejwt The current is given by a sinusoid with same the frequency was the input voltage, but a different magnitude and different phase. The physical voltage and current are obtained by taking the real part. In complex form, the current is given by i(t) Vo ejwt R1+jw/ The differential equation that describes the current follows from Kirchoff's voltage law, and is given by di(t) L + Ri(t) = Voejwt dtarrow_forward2. (4 marks) Use the real and imaginary parts of ĉejut, where ñ = a + jb = e³, to show that: c cos(wt) = acos(wt) – bsin(wt), csin(wt) = a sin(wt) + bcos(wt). Describe the relations between a, b, c, and o.arrow_forward
- Compute the thevenin equivalent between the two terminals a-b zeq and veq show all your steps and explain clearly what you did.arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- Don't use ai to answer I will report you answerarrow_forwardconpute the thevenin equivalent between the terminals a and b Veq and Zeq note that the voltage source has 5e^j0 V the other values if not clear are -8j 8 20 and 5ohmsarrow_forward-calculate theoretical voltage and current values in Figure 1.3 and record them in Table 1.1. Calculate-all- voltage and current values as peak-to-peak. Table 1.1: Calculated Values of RC-Circuit ZTotale in (p-to-p)¤ VR-(p-to-p)¤ Vc-(p-to-p)¤ R(2) X-(2) mag (mA) angled mag (V) angled mag-(V) angle Freq. (Hz) X (N)- ρα ρα 500x 4000x ρα ρα ρα ρα ρα ρα ρα ραarrow_forward
- Q1 .Determine the model of the following system using Mason's rulearrow_forwardA three-phase delta-connected load, each phase of which has an inductive reactance of 40 Ω and a resistance of 25 Ω, is fed from the secondary of a three-phase star-connected transformer which has a phase voltage of 230 V. Draw the circuit diagram of the system and calculate: (a) the current in each phase of the load; (b) the p.d. across each phase of the load; (c) the current in the transformer secondary windings; (d) the total active power taken from the supply and its power factor. ANS= 8.8 A, 416 V, 15.25 A, 5810 Warrow_forward"I need something clear written by hand with steps." Find Laplace transform and the corresponding ROC for x(t) = e−3sin(2t) u(t)dtarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,