EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 63QTP
A piece of steel has a hardness of 300 HB. Calculate its tensile strength, in MPa and in psi.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
During the test of hardness due to Brinell, the diameter of the testing sphere was0.01m, the exerted load was 3.0 tons and the diameter of the indented area wasapproximately 0.003 m. Find the value of the hardness for this material. Also find theTensile strength if the proportionality constant was approximately 3.45.
Determine the force applied to a hardness
specimen that has Brinell hardness
number as 974 and the surface area of
indentation as 15 mm2.
The force applied to the Hardness Specimen
(kN)=
A tensile force. of 120 kN is applied on a 0.02-m diameter and 2-m long rod. After applying the load, the diameter decreases to 0.01998 m and the length increases to 2.01 m. The true stress on that rod is?
Chapter 2 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- You find that the ultimate stress of an object is 15%. What does that mean qualitatively?arrow_forwardA wire with circular base of radius 3 mm was subjected to tensile stress of 13.5 N. If half the amount of stress is to be applied to a wire with square base of 1.86 mm width, what must have been the force (in Newton) applied to this new wire?arrow_forwardQ3b. The stress-strain characteristic curves for materials A, B and C are shown below. Which one statement most accurately describes the relative toughness and ductility for materials A, B & C? Material A Material B Material C Strain Select one: a. Material A has low toughness, Material B has high ductility and Material C has low toughness. b. Material A has high toughness, Material B has low ductility and Material C has low toughness. c. Material A has low ductility, Material B has low toughness and Material C has low toughness. d. Material A has high ductility, Material B has low toughness and Material C has high toughness. Stressarrow_forward
- When a statically determinate structure is heated or cooled, its members do not experience any“thermal” stress. But for a statically indeterminate structure, this is not true. Explain why.arrow_forwardWhat is the force required to a steel wire to double its length when its area of cross-section is one sq. cm and Young's modulus is 200 G Pa. As the length of the wire is doubled, the change in length is equal to its original length.arrow_forwardsolve asaparrow_forward
- An engineer determines that a 32 cm long rod of 1020 grade steel will be subjected to a tension of 40 kN. The following two design requirements must be met: the stress must remain below 120 MPa, and the rod must stretch less than 0.135 mm. Determine an appropriate value for the rod's diameter to meet these two requirements. (Round up to the nearest millimeter when reporting your answer.) mmarrow_forwardCalculate the modulus of elasticity of the following material if it has a design stress of 250 kPa, the material is exposed to tensile stress and receives 15% of elongation from its original dimension. Express your answer in psi.arrow_forwardCalculate the thickness of metal necessary for a cylindrical shell of internal diameter 160 mm to withstand an internal pressure of 25 MN/m2, if maximum permissible tensile stress is 125 MN/m2. Assume that the vessel is a thick pressure vessel.arrow_forward
- 27c) The Vickers hardness value of a material is 526.58 HV. What is its mean diagonal if the applied load is 30kgf? take vaue of angle between edges as 136 degrees.arrow_forward7. In the Brinell hardness test, if the load used 1200 kg, and the ball diameter 6 mm, write down the diameter of the indentation (in mm unit) if the BHN number was 586. * (1 Point) Enter your answerarrow_forwardA 10000N tensile force is used to pull a cylindrical rod with an initial diameter of 2 cm. During the pull, the rod's diameter decreases to 1.8 cm. What is the true stress?I will rate accordingly...arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY