EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 62QTP
In a disk test performed on a specimen 1.00 in. in diameter and 1/4 in. thick, the specimen fractures at a stress of 40,000 psi. What was the load on it?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In tensile test a plain carbon steel
specimen has a (40mm) gauge length
and the Final area (A final) of specimen
after tensile test was 264.327. The load
which caused fracture was (122.5 KN).
After fracture, the final length was
47.516mm
True stress at fracture is. *
O 463.441 N/mm2,
O 525.441 N/mm2,
O 254.441 N/mm2,
498.441 N/mm2,
In a tensile test, the force at the yield point was 1000 KN, at the ultimate point was
1500 KN and at the fracture point was 900 KN. The diameter of the specimen before
the test was 10 mm. Find:
a-The yield stress b- The tensile stress c- The fracture stress.
any to point please
please don't take long time
thank you...
I just can't find The percent elongation at fracture.
Chapter 2 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 2 - Distinguish between engineering stress and true...Ch. 2 - In a stress-strain curve, what is the proportional...Ch. 2 - Describe the events that take place when a...Ch. 2 - What is ductility, and how is it measured?Ch. 2 - In the equation =Kn, which represents the true...Ch. 2 - What is strain-rate sensitivity, and how is it...Ch. 2 - What test can measure the properties of a material...Ch. 2 - What testing procedures can be used to measure the...Ch. 2 - Describe the differences between brittle and...Ch. 2 - What is hardness? Explain.
Ch. 2 - Describe the features of a Rockwell hardness test.Ch. 2 - What is a Leeb test? How is it different from a...Ch. 2 - Differentiate between stress relaxation and creep.Ch. 2 - Describe the difference between elastic and...Ch. 2 - Explain what uniform elongation means in tension...Ch. 2 - Describe the difference between deformation rate...Ch. 2 - Describe the difficulties involved in conducting a...Ch. 2 - What is Hookes law? Youngs modulus? Poissons...Ch. 2 - Describe the difference between transgranular and...Ch. 2 - What is the reason that yield strength is...Ch. 2 - Why does the fatigue strength of a specimen or...Ch. 2 - If striations are observed under microscopic...Ch. 2 - What is an Izod test? Why are Izod tests useful?Ch. 2 - Why does temperature increase during plastic...Ch. 2 - What is residual stress? How can residual stresses...Ch. 2 - On the same scale for stress, the tensile true...Ch. 2 - What are the similarities and differences between...Ch. 2 - Can a material have a negative Poissons ratio?...Ch. 2 - It has been stated that the higher the value of m,...Ch. 2 - Explain why materials with high m values, such as...Ch. 2 - With a simple sketch, explain whether it is...Ch. 2 - Explain why the difference between engineering...Ch. 2 - Consider an elastomer, such as a rubber band. This...Ch. 2 - If a material (such as aluminum) does not have an...Ch. 2 - What role, if any, does friction play in a...Ch. 2 - Which hardness tests and scales would you use for...Ch. 2 - Consider the circumstance where a Vickers hardness...Ch. 2 - Which of the two tests, tension or compression,...Ch. 2 - List and explain briefly the conditions that...Ch. 2 - List the factors that you would consider in...Ch. 2 - On the basis of Fig. 2.5, can you calculate the...Ch. 2 - If a metal tension-test specimen is rapidly pulled...Ch. 2 - Comment on your observations regarding the...Ch. 2 - Will the disk test be applicable to a ductile...Ch. 2 - What hardness test is suitable for determining the...Ch. 2 - Wire rope consists of many wires that bend and...Ch. 2 - A statistical sampling of Rockwell C hardness...Ch. 2 - In a Brinell hardness test, the resulting...Ch. 2 - Some coatings are extremely thinsome as thin as a...Ch. 2 - Select an appropriate hardness test for each of...Ch. 2 - A paper clip is made of wire 0.5 mm in diameter....Ch. 2 - A 250-mm-long strip of metal is stretched in two...Ch. 2 - Identify the two materials in Fig. 2.5 that have...Ch. 2 - Plot the ultimate strength vs. stiffness for the...Ch. 2 - If you remove the layer of material ad from the...Ch. 2 - Prove that the true strain at necking equals the...Ch. 2 - Percent elongation is always defined in terms of...Ch. 2 - You are given the K and n values of two different...Ch. 2 - A cable is made of two strands of different...Ch. 2 - On the basis of the information given in Fig. 2.5,...Ch. 2 - In a disk test performed on a specimen 1.00 in. in...Ch. 2 - A piece of steel has a hardness of 300 HB....Ch. 2 - A metal has the following properties: UTS = 70,000...Ch. 2 - Using only Fig. 2.5, calculate the maximum load in...Ch. 2 - Estimate the modulus of resilience for a highly...Ch. 2 - A metal has a strength coefficient K = 100,000 psi...Ch. 2 - Plot the true stresstrue strain curves for the...Ch. 2 - The design specification for a metal requires a...Ch. 2 - Calculate the major and minor pyramid angles for a...Ch. 2 - If a material has a target hardness of 300 HB,...Ch. 2 - A Rockwell A test was conducted on a material and...Ch. 2 - For a cold-drawn 0.5% carbon steel, will a...Ch. 2 - A material is tested in tension. Over a 1-in. gage...Ch. 2 - A horizontal rigid bar cc is subjecting specimen a...Ch. 2 - List and explain the desirable mechanical...Ch. 2 - When making a hamburger, you may have observed the...Ch. 2 - An inexpensive claylike material called Silly...Ch. 2 - In tension testing of specimens, mechanical and...Ch. 2 - Demonstrate the impact toughness of a piece of...Ch. 2 - Using a large rubber band and a set of weights,...Ch. 2 - Find or prepare some solid circular pieces of...Ch. 2 - Take several rubber bands and pull them at...Ch. 2 - Devise a simple fixture for conducting the bend...Ch. 2 - By pressing a small ball bearing against the top...Ch. 2 - Describe your observations regarding Fig. 2.14c.Ch. 2 - Embed a small steel ball in a soft block of...Ch. 2 - Devise a simple experiment, and perform tests on...Ch. 2 - Obtain some solid and some tubular metal pieces,...Ch. 2 - Explain how you would obtain an estimate of the...Ch. 2 - Without using the words stress or strain, define...Ch. 2 - We know that it is relatively easy to subject a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The Highest load sustained druing an uniaxial tensile testing experiment is 7,500lb. If the original cross section has a diamter of 0.25in, what is the ultimate tensile strength? (please also make a drawing)arrow_forwardanswer must be in handwritten format or you can use Ms word but please do not typearrow_forwardA tension test was performed on a specimen having an original diameter of 12.5 mm and a gage length of 50mm. The data are listed in the table below: Complete the following: Plot the stress-strain curve. Label the y-axis every 50 MPa, and the x-axis every 0.05 mm/mm. Plot the linear portion of the stress-strain curve (first 5 points). Label the y-axis every 50 MPa, and the x-axis every 0.001 mm/mm. Determine the approximate Modulus of Elasticity Determine the approximate Ultimate Stress Determine the approximate Fracture Stress Determine the approximate Modulus of Resilience Determine the approximate Modulus of Toughness Other Requirements: Provide an example hand-written calculation showing how you calculated one point on the curve. Remember to properly label your plots and provide axis labels with units. Hand sketched plots will not be accepted. Use Excel or similar software.arrow_forward
- Calculate the tensile stress when applied force of 1000ON on specimen of diameter of 10mm 271 O 255 172 O 127 Oarrow_forwardIn tensile test a plain carbon steel specimen has a (40mm) gauge length and the Final area (A final) of specimen after tensile test was 264.327. The load which caused fracture was (122.5 KN). After fracture, the final length was 47.516mm The true stress at fracture is less than engineering stress at fracture True Falsearrow_forwardA mild steel tensile specimen of initial length 44 mm and initial diameter 6.4 mm is subjected to a tensile test and the following data are obtained. - Yield Strength as 88 MPa - Maximum Strength as 212 MPa - Fracture Strength as 152 MPa - Percentage of Elongation as 63 % - Percentage of Reduction in area as 39% Determine the Fracture load The Final length in mm = The Final area in mm2 =arrow_forward
- A cylindrical specimen of mild steel having 20% ductility (in percentage of reduction in area) is tensile tested and fractured at a stress of 600 MPa. If original diameter is 10 mm, what is the true stress at fracture. O 810 MPa 492MPA O 602 MPa O 750 MPaarrow_forwardAn machine part is being tested with a load of 63,000 lb. The allowable tensile stress is10,000 psi, with factor of safety of 3. If the original length of steel specimen is 43 inches withelongation not exceeding 0.005 in, what diameter of the safe specimen?arrow_forwardA tensile test specimen has a starting gage length 50 mm and a cross-sectional area 200 mm2. During the test, the specimen yields under a load of 30,000 N (this is the 0.2% offset) at a gage length of 52 mm.The maximum load of 63,000 N is reached at a gage length of 57 mm just before necking begins. Final fracture occurs at a gage length of 63.5 mm. Determine (a) yield strength, (b) modulus of elasticity, (c) tensile strength, (d) engineering strain at maximum load, and (e) percent elongation.arrow_forward
- The data shown in the table below were obtained from a tensile test of high-strength steel. The test specimen had a diameter of 13mm and a gage length of 50mm. At fracture, the elongation between the gage marks was 3.0mm and the minimum diameter was 10.7mm. Plot the conventional stress-strain curve for the steel and determine the propotional limit, modulus of elasticity (i.e the slope of the initial part of the stress-strain curve), yield stress at 0.1% offset, ultimate stress, percent elongation in 50mm, and percent reduction area. TENSILE-TEST DATA Load(kN) Elongation(mm) 5 0.005 10 0.015 30 0.048 50 0.084 60 0.099 64.5 0.109 67.0 0.119 68.0 0.137 69.0 0.160 70.0 0.229 72.0 0.259 76.0 0.330 84.0 0.584 92.0 0.853 100.0 1.288 112.0 2.814 113.0 Fracturearrow_forwardIn tensile test a plain carbon steel specimen has a (40mm) gauge length and the Final area (A final) of specimen after tensile test was 264.327. The load which caused fracture was (122.5 KN). After fracture, the final length was 47.516mm % Elongation of specimen is O 18.79 17.79 O 20.79 O 16.79 Karrow_forwardThe results of a tensile test are: Diameter of the specimen Gauge length Load at limit of Proportionality Extension at the limit of Proportionality Maximum Load : 10mm :40 mm :80kN : 0.06mm. :100 kN Calculate ultimate tensile stress and young's modulus.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY