Biochemistry: The Molecular Basis of Life
Biochemistry: The Molecular Basis of Life
6th Edition
ISBN: 9780190209896
Author: Trudy McKee, James R. McKee
Publisher: Oxford University Press
bartleby

Videos

Question
Book Icon
Chapter 2, Problem 57FB
Summary Introduction

To review:

The given blank space in the statement, “The most basic and critical function of membranes is to serve as a________________.”

Introduction:

Biological membranes are the structures that enclose all the living cells and organelles. These are thin, flexible, stable and sheet-like in structure. These membranes are two-dimensional complexes.

Blurred answer
Students have asked these similar questions
In the glycolytic pathway, a six-carbon sugar (fructose 1,6-bisphosphate) is cleaved to form two three-carbon sugars, which undergo further metabolism. In this pathway, an isomerization of glucose 6-phosphate to fructose 6-phosphate (as shown in the diagram) occurs two steps before the cleavage reaction. The intervening step is phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate. H H | H-C-OH H-C-OH C=0 HO-C-H HO-C-H phosphohexose isomerase H-C-OH H-C-OH H-C-OH H-C-OH CH₂OPO CH₂OPO Glucose 6-phosphate Fructose 6-phosphate What does the isomerization step accomplish from a chemical perspective? Isomerization alters the molecular formula of the compound, allowing for subsequent phosphorylation. Isomerization moves the carbonyl group, setting up a cleavage between the central carbons. Isomerization causes the gain of electrons, allowing for the eventual release of NADH. Isomerization reactions cause the direct production of energy in the form of ATP.
From data in the table, calculate the AG value for the reactions. Reaction AG' (kJ/mol) Phosphocreatine + H₂O →>> creatine + P -43.0 ADP + Pi → ATP + H₂O +30.5 Fructose +P → fructose 6-phosphate + H₂O +15.9 Phosphocreatine + ADP creatine + ATP AG'O ATP + fructose → ADP + fructose 6-phosphate AG'° kJ/mol kJ/mol
Macmillan Learning The phosphorylation of glucose to glucose 6-phosphate is the initial step in the catabolism of glucose. The direct phosphorylation of glucose by P, is described by the equation Glucose + P ← glucose 6-phosphate + H₂O AG = 13.8 kJ/mol Coupling ATP hydrolysis to glucose phosphorylation makes thermodynamic sense, but consider how the coupling might take place. Given that coupling requires a common intermediate, one conceivable mechanism is to use ATP hydrolysis to raise the intracellular concentration of Pi. The increase in P; concentration would drive the unfavorable phosphorylation of glucose by Pi- Is increasing the P; concentration a reasonable way to couple ATP hydrolysis and glucose phosphorylation? No. The phosphate salts of divalent cations would be present in excess and precipitate out. Yes. Increasing the concentration of P; would decrease K'eq and shift equilibrium to the right. Yes. The extra ATP hydrolysis would provide enough free energy to drive the…
Knowledge Booster
Background pattern image
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Body Structures & Functions Updated
Biology
ISBN:9780357191606
Author:Scott
Publisher:Cengage
Text book image
Body Structures & Functions
Biology
ISBN:9781285695495
Author:Scott
Publisher:Cengage
Text book image
Biomedical Instrumentation Systems
Chemistry
ISBN:9781133478294
Author:Chatterjee
Publisher:Cengage
Text book image
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Aquaculture Science
Biology
ISBN:9781133558347
Author:Parker
Publisher:Cengage
DNA Use In Forensic Science; Author: DeBacco University;https://www.youtube.com/watch?v=2YIG3lUP-74;License: Standard YouTube License, CC-BY
Analysing forensic evidence | The Laboratory; Author: Wellcome Collection;https://www.youtube.com/watch?v=68Y-OamcTJ8;License: Standard YouTube License, CC-BY