
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 57E
(a)
To determine
To Deduce: The formula of wavelength of spectral lines emitted by the hydrogen.
(b)
To determine
To Evaluate: The range of light.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please rewrite the rules of Quantum mechanics?
Suppose there are two transformers between your house and the high-voltage transmission line
that distributes the power. In addition, assume your house is the only one using electric power. At
a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage
from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the
primary of the transformer. The secondary is connected to the primary of another step-down
transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole.
The secondary of this transformer delivers a 240-V emf to your house. How much power is your
house using? Remember that the current and voltage given in this problem are rms values.
The human eye is most sensitive to light having a frequency of about 5.5 × 1014 Hz, which is in the
yellow-green region of the electromagnetic spectrum. How many wavelengths of this light can fit
across a distance of 2.2 cm?
Chapter 2 Solutions
Modern Physics
Ch. 2 - Explain to your friend, who is willing to accept...Ch. 2 - A friend says, “It makes no sense that Anna could...Ch. 2 - The Lorentz transformation equations have x and t...Ch. 2 - You are gliding over Earth’s surface at a high...Ch. 2 - A thin plate has a round hole whose diameter in...Ch. 2 - In the twin paradox situation, a fellow student...Ch. 2 - Does the asymmetric aging of an Earthbound...Ch. 2 - You are floating in space when you notice a flying...Ch. 2 - Prob. 9CQCh. 2 - A relativity enthusiast says, “If E=mc2 and energy...
Ch. 2 - Prob. 11CQCh. 2 - Prob. 12CQCh. 2 - Two objects isolated from the rest of the universe...Ch. 2 - Particles of light have no mass. Does the Sun’s...Ch. 2 - Prob. 15CQCh. 2 - In a television picture tube, a beam of electrons...Ch. 2 - Prob. 17ECh. 2 - Verify that the special case x=vt,x=0 leads to...Ch. 2 - If an object actually occupies less space...Ch. 2 - Through a window in Carl’s spaceship, passing at...Ch. 2 - According to an observer on Earth, a spacecraft...Ch. 2 - According to Bob on Earth, Planet Y (uninhabited)...Ch. 2 - Anna is on a railroad flatcar moving at 0.6c...Ch. 2 - A polevaulter holds a 16 ft. pole. A barn has...Ch. 2 - Anna and Bob are in identical spaceships, each 100...Ch. 2 - Bob is watching Anna fly by in her new highspeed...Ch. 2 - Rob and Bob Jr. stand at open doorways at opposite...Ch. 2 - The diagram shows Bob’s view of the passing of two...Ch. 2 - Refer to Figure 2.18. (a) How long is a spaceship?...Ch. 2 - You are in a bus traveling on a straight road at...Ch. 2 - A spaceship travels at 0.8c. As this spaceship...Ch. 2 - You are on a highspeed train, traveling at a...Ch. 2 - A famous experiment detected 527 muons per hour at...Ch. 2 - In the frame in which they are at rest, the number...Ch. 2 - A supersonic plane travels at 420 m/s. As this...Ch. 2 - Prob. 36ECh. 2 - According to Bob, on Earth, it is 20 ly to Planet...Ch. 2 - A plank, fixed to a sled at rest in frame S, is of...Ch. 2 - Bob in frame S, is observing the moving plank of...Ch. 2 - An experimenter determines that a particle created...Ch. 2 - A muon has a mean lifetime of 2.2s in its rest...Ch. 2 - A pion is an elementary particle that, on averages...Ch. 2 - Anna and Bob have identical spaceships 60 m long....Ch. 2 - Demonstrate that equations (212) and (213) become...Ch. 2 - Planet W is 12 ly from Earth. Anna and Bob are...Ch. 2 - Anna and Bob are both born just as Anna’s...Ch. 2 - Consider Anna, Bob, and Carl in the twin paradox....Ch. 2 - You stand at the center of your 100 m spaceship...Ch. 2 - From a standstill, you begin jogging at 5 m/s...Ch. 2 - A meterstick is glued to the wall with its 100 cm...Ch. 2 - Prob. 51ECh. 2 - By what factor would a star’s characteristic...Ch. 2 - At rest, a light source emits 532 nm light. (a) As...Ch. 2 - The light from galaxy NGC 221 consists of a...Ch. 2 - A space probe has a powerful light beacon that...Ch. 2 - Prob. 56ECh. 2 - Prob. 57ECh. 2 - To catch speeders, a police radar gun detects the...Ch. 2 - Bob is on Earth. Anna is on a spacecraft moving...Ch. 2 - According to Anna, on Earth, Bob is on a spaceship...Ch. 2 - Prove that if v and u are less than c, it is...Ch. 2 - In a particle collider experiment, particle 1 is...Ch. 2 - A light beam moves in the xyplane and has an...Ch. 2 - A light beam moves at an angle ? with the xaxis as...Ch. 2 - You tire a light signal at 60° north of west. (a)...Ch. 2 - At t=0 , a bright beacon at the origin flashes,...Ch. 2 - Prob. 67ECh. 2 - By applying the relativistic velocity...Ch. 2 - Prob. 69ECh. 2 - What are the momentum, energy, and kinetic energy...Ch. 2 - What would be the internal energy, kinetic energy,...Ch. 2 - By how much (in picograms) does the mass of 1 mol...Ch. 2 - Prob. 73ECh. 2 - A typical household uses 500 kWh of energy in 1...Ch. 2 - Prob. 75ECh. 2 - Prob. 76ECh. 2 - Prob. 77ECh. 2 - Show that the relativistic expression for kinetic...Ch. 2 - At Earth’s location, the intensity of sunlight is...Ch. 2 - Prob. 80ECh. 2 - Prob. 81ECh. 2 - Prob. 82ECh. 2 - How fast must an object be moving for its kinetic...Ch. 2 - How much work must be done to accelerate an...Ch. 2 - An electron accelerated from rest through a...Ch. 2 - What is the momentum of a proton accelerated...Ch. 2 - A proton is accelerated from through a potential...Ch. 2 - xzA particle of mass m0 moves the lab at 0.6c....Ch. 2 - 89. The boron14 nucleus (mass: 14.02266 u) “beta...Ch. 2 - A 3.000 u object moving to the right through a...Ch. 2 - A 10 kg object is moving to the right at 0.6c. It...Ch. 2 - Particle 1, of mass m1 , moving at 0.8c relative...Ch. 2 - Consider the collisions of two identical...Ch. 2 - A kaon (denoted K0 ) ¡s an unstable particle mass...Ch. 2 - In the frame of reference shown, a stationary...Ch. 2 - Prob. 96ECh. 2 - Show that E2=p2c2+m2c4 follows from expressions...Ch. 2 - Equation (2-30) is an approximation correct only...Ch. 2 - According to an observer at Earth’s equator, by...Ch. 2 - If it is fundamental to nature that a given mass...Ch. 2 - Prob. 101ECh. 2 - Suppose particles begin moving in one dimension...Ch. 2 - Prob. 103ECh. 2 - From the Lorentz transformation equations, show...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - For the situation given in Exercise 22, find the...Ch. 2 - Show that equation (236) follows from the...Ch. 2 - A 1 kg object moves at 0.8crelative to Earth. (a)...Ch. 2 - From p=umu (i.e., px=umux , py=umuy , and pz=umuz...Ch. 2 - Prob. 110ECh. 2 - An object of mass 3m0 moves to the right at...Ch. 2 - Prob. 112ECh. 2 - Derive the following expressions for the...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - A point charge +q rests halfway between two steady...Ch. 2 - Prob. 116CECh. 2 - Prob. 117CECh. 2 - A rocket maintains a constant thrust F, giving it...Ch. 2 - Exercise 117 gives the speed u of an object...Ch. 2 - In Example 2.5, we noted that Anna could go...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A one-dimensional harmonic oscillator of mass m and angular frequency w is in a heat bath of temperature T. What is the root mean square of the displacement of the oscillator? (In the expressions below k is the Boltzmann constant.) Select one: ○ (KT/mw²)1/2 ○ (KT/mw²)-1/2 ○ kT/w O (KT/mw²) 1/2In(2)arrow_forwardTwo polarizers are placed on top of each other so that their transmission axes coincide. If unpolarized light falls on the system, the transmitted intensity is lo. What is the transmitted intensity if one of the polarizers is rotated by 30 degrees? Select one: ○ 10/4 ○ 0.866 lo ○ 310/4 01/2 10/2arrow_forwardBefore attempting this problem, review Conceptual Example 7. The intensity of the light that reaches the photocell in the drawing is 160 W/m², when 0 = 18°. What would be the intensity reaching the photocell if the analyzer were removed from the setup, everything else remaining the same? Light Photocell Polarizer Insert Analyzerarrow_forward
- The lifetime of a muon in its rest frame is 2.2 microseconds. What is the lifetime of the muon measured in the laboratory frame, where the muon's kinetic energy is 53 MeV? It is known that the rest energy of the muon is 106 MeV. Select one: O 4.4 microseconds O 6.6 microseconds O 3.3 microseconds O 1.1 microsecondsarrow_forwardThe Lagrangian of a particle performing harmonic oscil- lations is written in the form L = ax² - Bx² - yx, where a, and are constants. What is the angular frequency of oscillations? A) √2/a B) √(+2a)/B C) √√Ba D) B/αarrow_forwardThe mean temperature of the Earth is T=287 K. What would the new mean temperature T' be if the mean distance between the Earth and the Sun was increased by 2%? Select one: ○ 293 K O 281 K ○ 273 K 284 Karrow_forward
- Two concentric current-carrying wire loops of radius 3 cm and 9 cm lie in the same plane. The currents in the loops flow in the same direction and are equal in magnitude. The magnetic field at the common center of the loops is 50 mT. What would be the value of magnetic field at the center if the direction of the two currents was opposite to each other (but their value is kept constant)? Select one: ○ 20 mT ○ 10 mT O 15 mT ○ 25 mTarrow_forwardAn ideal coil of inductivity 50 mH is connected in series with a resistor of 50 ohm. This system is connected to a 4.5 V battery for a long time. What is the current in the circuit? Select one: O 45 mA ○ 90 mA 00 mA O 150 mAarrow_forwardThere are two thin-walled spherical shells made from the same material, the radius of the smaller shell is half of the radius of the larger one. The thickness of the walls is the same. Denote the moment of inertia (with respect to the center) of the larger shell by I₁, and that of the smaller one by 12. What is the ratio I₁/12? Select one: ○ 8 O 16 O 4 ○ 32arrow_forward
- A swimming pool has dimensions 20.0 m X 20.0 m and a flat bottom. The pool is filled to a depth of 3.00 m with fresh water. By what force does the water push each of the sidewalls? Density of water is 1000 kg/m³. Select one: ○ ~ 900 KN о ~ 2 ~ 1800 kN 600 kN 1500 kNarrow_forwardFrom one corner of a thin homogeneous square metal sheet with sides of L = 20 cm is cut an L/2 square sheet as shown in the figure. Approximately how far away is the centre of mass of the resulting shape from the centre P of the original square? P ○ 24 mm ○ 42 mm ○ 32 mm ○ 16 mmarrow_forward20:19 Vol 69% + WiFi2 nothing happens to the nqara lever more the container (d) none of these 33. Statement I: The internal energy of a solid substance increases during melting.4_03-04-2025_QP.pdf Statement II: The molecules have greater kinetic energy in a liquid. Statement I and Statement II are true and the (a) Statement II is the correct explanation of Statement I. Statement I and Statement II are true but the (b) Statement II is not the correct explanation of Statement I. (c) Statement I is true but Statement II is false. (d) Statement I and Statement II are false. 34. Select correct statement related to heat 35. (a) Heat is possessed by a body (b) (c) Hot water contains more heat as compared to cold water Heat is the energy which flows due to temperature difference (d) All of these Two liquids A and B are at 32°C and 24°C. When mixed in equal masses the temperature of the mixture is found to be 28°C. Their specific heats are in the ratio of: (a) 3:2 (c) 1:1 (b) 2:3 (d) 4:3 36.…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning


Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning