
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 45E
Planet W is 12 ly from Earth. Anna and Bob are both 20 yr old. Anna travels to Planet W at 0.6c, quickly turns around, and returns to Earth at 0.6c. How old will Anna and Bob be when Anna gets back?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.
Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.
3. An Atwood machine consists of two masses, mA
and m B, which are connected by an inelastic cord
of negligible mass that passes over a pulley. If the
pulley has radius RO and
moment of inertia I about its axle, determine the
acceleration of the masses
mA and m B, and compare to the situation where the
moment of inertia of the
pulley is ignored. Ignore friction at the axle O. Use
angular momentum and torque in this solution
Chapter 2 Solutions
Modern Physics
Ch. 2 - Explain to your friend, who is willing to accept...Ch. 2 - A friend says, “It makes no sense that Anna could...Ch. 2 - The Lorentz transformation equations have x and t...Ch. 2 - You are gliding over Earth’s surface at a high...Ch. 2 - A thin plate has a round hole whose diameter in...Ch. 2 - In the twin paradox situation, a fellow student...Ch. 2 - Does the asymmetric aging of an Earthbound...Ch. 2 - You are floating in space when you notice a flying...Ch. 2 - Prob. 9CQCh. 2 - A relativity enthusiast says, “If E=mc2 and energy...
Ch. 2 - Prob. 11CQCh. 2 - Prob. 12CQCh. 2 - Two objects isolated from the rest of the universe...Ch. 2 - Particles of light have no mass. Does the Sun’s...Ch. 2 - Prob. 15CQCh. 2 - In a television picture tube, a beam of electrons...Ch. 2 - Prob. 17ECh. 2 - Verify that the special case x=vt,x=0 leads to...Ch. 2 - If an object actually occupies less space...Ch. 2 - Through a window in Carl’s spaceship, passing at...Ch. 2 - According to an observer on Earth, a spacecraft...Ch. 2 - According to Bob on Earth, Planet Y (uninhabited)...Ch. 2 - Anna is on a railroad flatcar moving at 0.6c...Ch. 2 - A polevaulter holds a 16 ft. pole. A barn has...Ch. 2 - Anna and Bob are in identical spaceships, each 100...Ch. 2 - Bob is watching Anna fly by in her new highspeed...Ch. 2 - Rob and Bob Jr. stand at open doorways at opposite...Ch. 2 - The diagram shows Bob’s view of the passing of two...Ch. 2 - Refer to Figure 2.18. (a) How long is a spaceship?...Ch. 2 - You are in a bus traveling on a straight road at...Ch. 2 - A spaceship travels at 0.8c. As this spaceship...Ch. 2 - You are on a highspeed train, traveling at a...Ch. 2 - A famous experiment detected 527 muons per hour at...Ch. 2 - In the frame in which they are at rest, the number...Ch. 2 - A supersonic plane travels at 420 m/s. As this...Ch. 2 - Prob. 36ECh. 2 - According to Bob, on Earth, it is 20 ly to Planet...Ch. 2 - A plank, fixed to a sled at rest in frame S, is of...Ch. 2 - Bob in frame S, is observing the moving plank of...Ch. 2 - An experimenter determines that a particle created...Ch. 2 - A muon has a mean lifetime of 2.2s in its rest...Ch. 2 - A pion is an elementary particle that, on averages...Ch. 2 - Anna and Bob have identical spaceships 60 m long....Ch. 2 - Demonstrate that equations (212) and (213) become...Ch. 2 - Planet W is 12 ly from Earth. Anna and Bob are...Ch. 2 - Anna and Bob are both born just as Anna’s...Ch. 2 - Consider Anna, Bob, and Carl in the twin paradox....Ch. 2 - You stand at the center of your 100 m spaceship...Ch. 2 - From a standstill, you begin jogging at 5 m/s...Ch. 2 - A meterstick is glued to the wall with its 100 cm...Ch. 2 - Prob. 51ECh. 2 - By what factor would a star’s characteristic...Ch. 2 - At rest, a light source emits 532 nm light. (a) As...Ch. 2 - The light from galaxy NGC 221 consists of a...Ch. 2 - A space probe has a powerful light beacon that...Ch. 2 - Prob. 56ECh. 2 - Prob. 57ECh. 2 - To catch speeders, a police radar gun detects the...Ch. 2 - Bob is on Earth. Anna is on a spacecraft moving...Ch. 2 - According to Anna, on Earth, Bob is on a spaceship...Ch. 2 - Prove that if v and u are less than c, it is...Ch. 2 - In a particle collider experiment, particle 1 is...Ch. 2 - A light beam moves in the xyplane and has an...Ch. 2 - A light beam moves at an angle ? with the xaxis as...Ch. 2 - You tire a light signal at 60° north of west. (a)...Ch. 2 - At t=0 , a bright beacon at the origin flashes,...Ch. 2 - Prob. 67ECh. 2 - By applying the relativistic velocity...Ch. 2 - Prob. 69ECh. 2 - What are the momentum, energy, and kinetic energy...Ch. 2 - What would be the internal energy, kinetic energy,...Ch. 2 - By how much (in picograms) does the mass of 1 mol...Ch. 2 - Prob. 73ECh. 2 - A typical household uses 500 kWh of energy in 1...Ch. 2 - Prob. 75ECh. 2 - Prob. 76ECh. 2 - Prob. 77ECh. 2 - Show that the relativistic expression for kinetic...Ch. 2 - At Earth’s location, the intensity of sunlight is...Ch. 2 - Prob. 80ECh. 2 - Prob. 81ECh. 2 - Prob. 82ECh. 2 - How fast must an object be moving for its kinetic...Ch. 2 - How much work must be done to accelerate an...Ch. 2 - An electron accelerated from rest through a...Ch. 2 - What is the momentum of a proton accelerated...Ch. 2 - A proton is accelerated from through a potential...Ch. 2 - xzA particle of mass m0 moves the lab at 0.6c....Ch. 2 - 89. The boron14 nucleus (mass: 14.02266 u) “beta...Ch. 2 - A 3.000 u object moving to the right through a...Ch. 2 - A 10 kg object is moving to the right at 0.6c. It...Ch. 2 - Particle 1, of mass m1 , moving at 0.8c relative...Ch. 2 - Consider the collisions of two identical...Ch. 2 - A kaon (denoted K0 ) ¡s an unstable particle mass...Ch. 2 - In the frame of reference shown, a stationary...Ch. 2 - Prob. 96ECh. 2 - Show that E2=p2c2+m2c4 follows from expressions...Ch. 2 - Equation (2-30) is an approximation correct only...Ch. 2 - According to an observer at Earth’s equator, by...Ch. 2 - If it is fundamental to nature that a given mass...Ch. 2 - Prob. 101ECh. 2 - Suppose particles begin moving in one dimension...Ch. 2 - Prob. 103ECh. 2 - From the Lorentz transformation equations, show...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - For the situation given in Exercise 22, find the...Ch. 2 - Show that equation (236) follows from the...Ch. 2 - A 1 kg object moves at 0.8crelative to Earth. (a)...Ch. 2 - From p=umu (i.e., px=umux , py=umuy , and pz=umuz...Ch. 2 - Prob. 110ECh. 2 - An object of mass 3m0 moves to the right at...Ch. 2 - Prob. 112ECh. 2 - Derive the following expressions for the...Ch. 2 - (a) Determine the Lorentz transformation matrix...Ch. 2 - A point charge +q rests halfway between two steady...Ch. 2 - Prob. 116CECh. 2 - Prob. 117CECh. 2 - A rocket maintains a constant thrust F, giving it...Ch. 2 - Exercise 117 gives the speed u of an object...Ch. 2 - In Example 2.5, we noted that Anna could go...
Additional Science Textbook Solutions
Find more solutions based on key concepts
23. How many significant figures are there in the following values?
a. 0.05 × 10-4 b. 0.00340
c. 7.2 × 104 ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardCalculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forward
- 11. If all three collisions in the figure below are totally inelastic, which brings the car of mass (m) on the left to a halt? I m II III m m ע ע ע brick wall 0.5v 2m 2v 0.5m A. I B. II C. III D. I and II E. II and III F. I and III G. I, II and III (all of them)arrow_forwardHow can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?arrow_forwardYou want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Sectionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY