Exercise 117 gives the speed u of an object accelerated under a constant force. Show that the distance it travels is given by
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Modern Physics
Additional Science Textbook Solutions
The Cosmic Perspective (8th Edition)
Life in the Universe (4th Edition)
Sears And Zemansky's University Physics With Modern Physics
Essential University Physics: Volume 1 (3rd Edition)
An Introduction to Thermal Physics
College Physics: A Strategic Approach (3rd Edition)
- A rod of length L0 moving with a speed v along the horizontal direction makes an angle 0 with respect to the x axis. (a) Show that the length of the rod as measured by a stationary observer is L = L0[1 (v2/c2)cos2 0]1/2. (b) Show that the angle that the rod makes with the x axis is given by tan = tan 0. These results show that the rod is both contracted and rotated. (Take the lower end of the rod to be at the origin of the primed coordinate system.)arrow_forwardAccording to special relativity, a particle of rest mass m0 accelerated in one dimension by a force F obeys the equation of motion dp/dt = F. Here p = m0v/(1 –v2/c2)1/2 is the relativistic momentum, which reduces to m0v for v2/c2 << 1. (a) For the case of constant F and initial conditions x(0) = 0 = v(0), find x(t) and v(t). (b) Sketch your result for v(t). (c) Suppose that F/m0 = 10 m/s2 ( ≈ g on Earth). How much time is required for the particle to reach half the speed of light and of 99% the speed of light?arrow_forwardAn electron in a particle accelerator has a total energy that is 498 times its rest energy. What is the electron's speed? Express your answer as a ratio of the speed to the speed of light. (Round your answer to at least six decimal places.) V/C=_______ What is the kinetic energy of the electron, in units of MeV? _____ Mevarrow_forward
- Needs Complete typed solution with 100 % accuracy.arrow_forwardIn four hours a light plane having air speed 200 kph flies for 480 km against the wind and halfway back with same wind. What is the wind speed?arrow_forwardThe kinetic energy (T) of an object with mass m traveling at a speed v is defined as T = \frac{1}{2}mv^2T=21mv2. What is the kinetic energy (in J) of an object of mass 41 g traveling a velocity of 37 miles per hour? (1 mile = 1.609 km) Round your answer to the tenths (0.1) place.arrow_forward
- Subatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor. The proton collision that creates the pion also…arrow_forwardSubatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor. If the pion slows down to 0.99990c, about what…arrow_forwardSubatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor. According to the pion, what is the distance it…arrow_forward
- Subatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor. What is the half-life of a pion in the reference…arrow_forwardCalculate the mass if F = (40, 10) N and a = (0.4, 0.1) m/s2. Enter 0 if there exists no answer.arrow_forwardA student standing on a cliff throws a stone from a vertical height of d=8.0m above the level ground with velocity v0=24m/s at an angle θ=15∘�=15∘ below the horizontal, as shown. It moves without air resistance. With what speed in m/s does the stone hit the ground?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning