
(a)
Interpretation:
Which is more likely to conduct electricity and heat: metal or non-metal should be identified.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(b)
Interpretation:
Which is more likely to accept electrons: metal or non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(c)
Interpretation:
Which is more likely to be malleable in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(d)
Interpretation:
Which is more likely to be gas at room temperature in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(e)
Interpretation:
Which is more likely to be a transition element in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(f)
Interpretation:
Which is more likely to lose electrons in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Introduction to General, Organic and Biochemistry
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
