(a)
Interpretation:
Which is more likely to conduct electricity and heat: metal or non-metal should be identified.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(b)
Interpretation:
Which is more likely to accept electrons: metal or non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(c)
Interpretation:
Which is more likely to be malleable in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(d)
Interpretation:
Which is more likely to be gas at room temperature in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(e)
Interpretation:
Which is more likely to be a transition element in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
(f)
Interpretation:
Which is more likely to lose electrons in metal and non-metal is to be stated.
Concept Introduction:
Elements can be classified into three categories based on their properties; that is metal, non-metal and metalloids. Metals are solid at room temperature, shiny conductors of electricity and heat, ductile and malleable. In chemical reaction, metals tend to give up electrons.
Non-metal do not conduct heat and electricity, most of the non-metals are gas at room temperature. Non-metal accept electrons at in chemical reactions.
On the other hand, metalloids have some of the properties of metal and some of the non-metals.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Introduction to General, Organic and Biochemistry
- Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor.arrow_forward: Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO₂ NO3arrow_forward1d. Use Le Chatelier's principle to describe the effect of the following changes on the position of the Haber-Bosch equilibrium: N2(g) + 3H2(g)= 2NH3(9) AH = -92kJ Choose one of the following answers: shift to reactant side, shift to product side or no change and draw the resulting graph. I. Increase the [N2(g)] Effect: H₂ N₂ NH3 II. Decrease the volume of the container. Effect: H₂ N₂2 NH3arrow_forward
- f) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H₂C * H₂C CH2 C H2C * C Of H₂ 120°arrow_forwarde) Determine the hybridization and geometry around the indicated carbon atoms. H3C CH3 B HC CH2 A C C C CH3arrow_forwardDon't used Ai solution and hand raitingarrow_forward
- Don't used Ai solutionarrow_forwardDon't used Ai solution and hand raitingarrow_forward75.0 grams of an unknown metal was heated to 95.0°C, it was then placed into 150.0 grams of water at23.1°C, when the metal and water reached thermal equilibrium, the temperature was 27.8°C. Calculatethe specific heat of the metal. (Assume that the specific heat of water is 4.18 J/g °C)arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning