
Concept explainers
(a)
Interpretation:
True and false
Meaning of “energy is quantized” that only certain energy values are allowed.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on it own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
Electrons might be promoted only to the higher energy orbitals of certain fixed energy values; the value in between are not allowed. Thus, the given statement is True.
(b)
Interpretation:
True and false
According to Bohr energy of an electron in an atom is quantized.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
The electron in an atom don’t move freely in the space around the nucleus. The electrons move in certain fixed orbitals which have certain energy levels. Thus, the energy of the electrons in an atom is quantized. Therefore, the provided statement is True.
(c)
Interpretation:
True and false
Electrons present in the atoms are confined to regions of space known as “principle energy levels”.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
Though there is significantly large space outside the nucleus, the electrons are confined to particular regions around the nucleus. These regions are called the “principle energy levels” or shells. Therefore, the provided statement is True.
(d)
Interpretation:
True and false
Each principal energy level might hold the maximum of two electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
False.
Explanation of Solution
Each principal energy level or shell contains of varying number of subshells s, p, d, f. Thus, the number of electrons in each principal energy level also varies. The subshells (s) might hold a maximum of the two electrons, while the subshells p, d, f might hold the maximum 8, 18 and 32 electrons respectively. Therefore, the provided statement is False.
(e)
Interpretation:
True and false
An electron in a 1s orbital is held closer to the nucleus than an electron in a 2s orbitals.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
The 1s orbital lies in the first principal energy level, whereas the 2s orbital lies in the second principal energy level. The initial principal energy level is nearer to the nucleus as compared to the second. Therefore, the electron in the 1s orbital is nearer to the nucleus than that in the 2s orbital. Therefore, the provided statement is True.
(f)
Interpretation:
True and false
An electron in a 2s orbital is harder to remove from an atom than an electron in a 2s orbital.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
False.
Explanation of Solution
The electron in the 1s orbital is closer to the nucleus than the electron in the 2s orbital. So, the nuclear attraction on the electrons in the 1s orbital is greater than on those in the 2s orbital. Therefore, a higher energy is needed to remove the inner 1s electron compared to the 2s electron. So, the electron in 1s orbital is harder to remove from an atom than an electron in a 2s orbital. Therefore, the provided statement is False.
(g)
Interpretation:
True and false
An s orbital has the shape of a sphere, with the nucleus at the center of the sphere.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
The shapes of the orbitals represent the electron density that is the probability of finding the electrons. For an s orbital, the electron density is spherical around the nucleus. Therefore, the provided statement is True.
(h)
Interpretation:
True and false
Each 2p orbital has the shape of a dumbbell, with the nucleus at the midpoint of the dumbbell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
For a 2p orbital the electron density is a dumbbell shaped, with the nucleus at the midpoint of the dumbbell. Therefore, the provided statement is True.
(i)
Interpretation:
True and false
The three 2p orbitals in an atom are aligned parallel to each other.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
False.
Explanation of Solution
Each 2p orbital has the shape of the dumbbell, and the three 2p orbitals 2px, 2py, 2pz are at the right angles to each other with each orbital on x, y, z axis. Therefore, the provided statement is False.
(j)
Interpretation:
True and false
An orbital is a region of space that can hold two electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
In an atom, shells are divided into subshells, and within these subshells, electrons are grouped in orbitals with each orbital holding a maximum of two electrons. Therefore, the provided statement is True.
(k)
Interpretation:
True and false
The second shell contains one ‘s’ orbital and three ‘p’ orbitals.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
The second shell can hold a maximum of eight electrons. These electrons can occupy the 2s and 2p orbitals. The 2s orbital is a single s orbital and holds two electrons. The 2p orbitals in sets of three and hold six electrons. Thus, the second shell one s orbital and three p orbitals. Therefore, the provided statement is True.
(l)
Interpretation:
True and false
In the ground-state electron configuration of an atom, only the lowest-energy orbitals are occupied.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
The electron configuration of an atom provides description of the orbitals in which the electrons are occupied. In the ground-state electron configuration, electrons occupy the orbital the orbital of lower energy first. All other orbitals of higher energy are empty. Therefore, the provided statement is True.
(m)
Interpretation:
True and false
A spinning electron behaves as a tiny bar magnet, with a North Pole and South Pole.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
A spinning electron produces a tiny magnetic field, aligning itself in the north-south direction. Thus, a spinning electron is considered as a tiny bar magnet, with a North Pole and a South Pole.
Therefore, the provided statement is True.
(n)
Interpretation:
True and false
An orbital can hold a maximum of two electrons with their spins paired.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
An orbital can hold a maximum of two electrons. When magnetic field of two electrons are aligned in opposite directions, the electrons are said to be spin-paired.
Therefore, the provided statement is True.
(o)
Interpretation:
True and false
Paired electrons spins mean that the two electrons are aligned with their spins North Pole to North Pole and South Pole to South Pole.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
False.
Explanation of Solution
When magnetic fields of two electrons are aligned in opposite directions, the electrons are said to be spin-paired. Paired electron spins mean that the two electrons are aligned with their spins, North Pole to South Pole and South Pole to North Pole.
Therefore, the provided statement is False.
(p)
Interpretation:
True and false
An orbital box diagram puts all of the electrons of an atom in one box with their spins aligned.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
False.
Explanation of Solution
The orbital box diagrams are used to represent the electrons. In this diagram, each box represents an orbital, so each box will hold a maximum of two electrons. An unpaired electron is represented by an arrow with its head up, whereas two electrons with paired spins are represented by a pair of arrows with heads in opposite directions. So the orbital box diagram doesn’t fill all of the electrons an atom in one box with their spins aligned.
Therefore, the provided statement is False.
(q)
Interpretation:
True and false
An orbital box diagram of a carbon atom shows two unpaired electrons.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
A neutral carbon atom has six electrons. Two electrons are placed in the 1s orbital and two electrons are placed in the 2s orbital. The electrons in 1s an 2s orbitals are paired. The remaining two electrons are placed each in 2px, 2py orbitals.
Therefore, the provided statement is True.
(r)
Interpretation:
True and false
A Lewis dot structure shows only the electrons in the valence shell of an atom of the element.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
When writing a Lewis dot structure for an atom, the
Therefore, the provided statement is True.
(s)
Interpretation:
True and false
A characteristic of Group 1A elements is that each has one unpaired electron in its outermost occupied (valence) shell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
True.
Explanation of Solution
The group number provided the number of valence electrons in the outer shell of an atom. As the elements in Group 1A have only one valance electrons, it is always unpaired.
Therefore, the provided statement is True.
(t)
Interpretation:
True and false
A characteristic of Group 6A elements is that each has six unpaired electrons in its outermost occupied (valence) shell.
Concept Introduction:
There are four quantum numbers which explains the position of electrons in an atom. Below are details:
- Principle Quantum Number (n) - It explains the size of electron exist in the orbital.
- Angular Momentum Quantum Number (l) − It explains the orbitals’ shape.
- Magnetic Quantum Number (ml) − It explains about the orbital’s orientation in the space.
- Electron Spin Number (ms) − It explains about the direction which an electron spins on its own axis.

Answer to Problem 2.49P
False.
Explanation of Solution
The group number gives the number of valence electrons in the outer shell of an atom, and not the number of unpaired electrons. Group 6A elements have six valence electrons. Out of the six valence electrons, two electrons occupy the 2s orbital. The remaining four electrons occupy the 2p orbital such that two electrons are paired in a 2px orbital, whereas two unpaired electrons remain in 2py and 2pz.
Therefore, the provided statement is False.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction to General, Organic and Biochemistry
- Steps and explanation please. Add how to solve or target similar problems.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardThis organic molecule is dissolved in an acidic aqueous solution: OH OH A short time later sensitive infrared spectroscopy reveals the presence of a new C = O stretch absorption. That is, there must now be a new molecule present with at least one C = O bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. Videos 849 Explanation Check C Click and drag to start dwing a structure. # 3 MAR 23 Add/Remove steparrow_forward||| 7:47 ull 57% ← Problem 19 of 48 Submit Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the product of this carbocation rearrangement. Include all lone pairs and charges as appropriate. H 1,2-alkyl shift +arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forwardBelow is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hintarrow_forwardShow that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.arrow_forward(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.arrow_forwardCan I please get help with #3 & 4? Thanks you so much!arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





