
Concept explainers
(a)
Interpretation:
Answer for
Concept Introduction:
In scientific work, large and very small numbers occurs frequently. But it is been observed that, to record these vast numbers or very small numbers is difficult because, the numbers may get missed while recording them. It is time consuming and the possibilities of error occurrence are also high. Hence to overcome these demerits, a method called scientific notation is used. Scientific notation is a numerical system where a decimal number is expressed as product of two number between 1 and 10 (coefficient) and 10 that is raised to power (exponential term). In this method the numbers are expressed in form of “
For multiplication of the scientific notation, the coefficients are multiplied as such and the exponents are added. For division of the scientific notation, the coefficients are divided as such and the exponents are subtracted.
(a)

Answer to Problem 2.65EP
Answer for
Explanation of Solution
Given scientific notation is
The coefficient has to be multiplied and the exponents has to be added. This can be done as shown below,
This value has to be expressed to the correct number of significant figures. One of the number that is multiplied has three significant figures while the other has four significant figures. Hence, the answer is expressed with three significant figures as
(b)
Interpretation:
Answer for
Concept Introduction:
In scientific work, large and very small numbers occurs frequently. But it is been observed that, to record these vast numbers or very small numbers is difficult because, the numbers may get missed while recording them. It is time consuming and the possibilities of error occurrence are also high. Hence to overcome these demerits, a method called scientific notation is used. Scientific notation is a numerical system where a decimal number is expressed as product of two number between 1 and 10 (coefficient) and 10 that is raised to power (exponential term). In this method the numbers are expressed in form of “
For multiplication of the scientific notation, the coefficients are multiplied as such and the exponents are added. For division of the scientific notation, the coefficients are divided as such and the exponents are subtracted.
(b)

Answer to Problem 2.65EP
Answer for
Explanation of Solution
Given scientific notation is
The coefficient has to be multiplied and the exponents has to be added. This can be done as shown below,
This value has to be expressed to the correct number of significant figures. One of the number that is multiplied has two significant figures while the other two has three significant figures. Hence, the answer is expressed with two significant figures as
(c)
Interpretation:
Answer for
Concept Introduction:
In scientific work, large and very small numbers occurs frequently. But it is been observed that, to record these vast numbers or very small numbers is difficult because, the numbers may get missed while recording them. It is time consuming and the possibilities of error occurrence are also high. Hence to overcome these demerits, a method called scientific notation is used. Scientific notation is a numerical system where a decimal number is expressed as product of two number between 1 and 10 (coefficient) and 10 that is raised to power (exponential term). In this method the numbers are expressed in form of “
For multiplication of the scientific notation, the coefficients are multiplied as such and the exponents are added. For division of the scientific notation, the coefficients are divided as such and the exponents are subtracted.
(c)

Answer to Problem 2.65EP
Answer for
Explanation of Solution
Given scientific notation is
The coefficient has to be divided and the exponents has to be subtracted. This can be done as shown below,
This value has to be expressed to the correct number of significant figures. One of the number that is multiplied has two significant figures while the other has three significant figures. Hence, the answer is expressed with two significant figures as
(d)
Interpretation:
Answer for
Concept Introduction:
In scientific work, large and very small numbers occurs frequently. But it is been observed that, to record these vast numbers or very small numbers is difficult because, the numbers may get missed while recording them. It is time consuming and the possibilities of error occurrence are also high. Hence to overcome these demerits, a method called scientific notation is used. Scientific notation is a numerical system where a decimal number is expressed as product of two number between 1 and 10 (coefficient) and 10 that is raised to power (exponential term). In this method the numbers are expressed in form of “
For multiplication of the scientific notation, the coefficients are multiplied as such and the exponents are added. For division of the scientific notation, the coefficients are divided as such and the exponents are subtracted.
(d)

Answer to Problem 2.65EP
Answer for
Explanation of Solution
Given scientific notation is
For multiplication, the coefficient has to be multiplied and the exponent has to be added and for division the coefficient has to be divided and the exponents has to be subtracted. This can be done as shown below,
This value has to be expressed to the correct number of significant figures. All the scientific notation has two significant figures. Hence, the answer is expressed with two significant figures as
Want to see more full solutions like this?
Chapter 2 Solutions
General, Organic, and Biological Chemistry
- Which of the following could 1,2-ethanediol be directly synthesized from? OH HO О 0 0. O ?arrow_forwardDesign a synthesis of 1,2-diethoxyethane from an alkene. Select the single best answer for each part. Part: 0/3 Part 1 of 3 Which of the following could 1,2-diethoxyethane be directly synthesized from? O HO 0 HO.... OH HO HO × 5 > ?arrow_forwardDraw the skeletal structure of the major organic product of each step of the reaction sequence. Part: 0/2 Part 1 of 2 Part: 1/2 Part 2 of 2 Continue OH NaH Na Na Br + Click and drag to start drawing a structure. X : X G : Garrow_forward
- pleasearrow_forwardplease help me please pleasearrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AG⁰ = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of N2 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm ☑ 5 00. 18 Ararrow_forward
- i need help with the followingarrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO(g) +Cl₂ (g) = 2NOC1 (g) AGº = -41. kJ Now suppose a reaction vessel is filled with 8.90 atm of chlorine (C12) and 5.71 atm of nitrosyl chloride (NOC1) at 1075. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. atm ☑ 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HCN is a weak acid. acids: 0.29 mol of NaOH is added to 1.0 L of a 1.2M HCN solution. bases: ☑ other: 0.09 mol of HCl is added to acids: 1.0 L of a solution that is bases: 0.3M in both HCN and KCN. other: 0,0,... ? 00. 18 Ar 日arrow_forward
- Identifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: 0.2 mol of KOH is added to 1.0 L of a 0.5 M HF solution. bases: Х other: ☐ acids: 0.10 mol of HI is added to 1.0 L of a solution that is 1.4M in both HF and NaF. bases: other: ☐ 0,0,... ด ? 18 Ararrow_forwardIdentifying the major species in weak acid or weak base equilibria The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that NH3 is a weak base. acids: ☐ 1.8 mol of HCl is added to 1.0 L of a 1.0M NH3 bases: ☐ solution. other: ☐ 0.18 mol of HNO3 is added to 1.0 L of a solution that is 1.4M in both NH3 and NH₁Br. acids: bases: ☐ other: ☐ 0,0,... ? 000 18 Ar B 1arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NH3 (g) = N2 (g) +3H₂ —N2 (g) AGº = 34. kJ Now suppose a reaction vessel is filled with 4.19 atm of ammonia (NH3) and 9.94 atm of nitrogen (N2) at 378. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of NH 3 tend to rise or fall? ☐ x10 fall Х Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of NH 3 will tend to rise, can that be changed to a tendency to fall by adding H₂? Similarly, if you said the pressure of NH3 will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no atm 00. 18 Ar 무ㅎ ?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





