CHEMICAL PRINCIPLES (LL) W/ACCESS
7th Edition
ISBN: 9781319421175
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.45E
(a)
Interpretation Introduction
Interpretation:
The most important Lewis structure of
Concept Introduction:
Lewis structures represent covalent bonds and describe valence electrons configuration of atoms. The covalent bonds are depicted by lines and unshared electron pairs by pairs of dots. The sequence to write Lewis structure of some molecule is given as follows:
- The central atom is identified and various other atoms are arranged around it. This central atom so chosen is often the least electronegative.
- Total valence electrons are estimated for each atom.
- single bond is first placed between each atom pair.
- The electrons left can be allocated as unshared electron pairs or as multiple bonds around the right
symbol of the element to satisfy the octet (or duplet) for each atom. - Add charge on the overall structure in case of polyatomic cation or anion.
(b)
Interpretation Introduction
Interpretation:
Composition of the bonds and the hybridization of each lone pair in
Concept Introduction:
Refer to part (a).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The structure of caffeine is shown below.
(a) Complete the Lewis structure.
(b) How many pi bonds are present in caffeine? How many sigma bonds?
(c) Identify the hybridization of the carbon atoms.
(d) What is the value of the O-C-N angle?
Consider the reaction BF3 + NH3 -> F3B-NH3
(a) Describe the changes in hybridization of the B and N atoms as a result of this reaction.
(b) Describe the shapes of all the reactant molecules with their bond angles.
(c) Draw the overall shape of the product molecule and identify the bond angles around B and N atoms.
(d) What is the name of the bond between B and N.
(e)Describe the bonding orbitals that make the B and F, B and N & N and H bonds in the product molecule.
Butadiene, C4H6, is a planar molecule that has the followingcarbon–carbon bond lengths:
(a) Predict the bond angles around each of the carbon atoms and sketch the molecule. (b) From left to right, what is the hybridization of each carbon atom in butadiene? (c) The middle C—C bond length in butadiene (1.48 Å) is a little shorter than the average C—C single bond length (1.54 Å). Does this imply that the middle C—C bond in butadiene is weaker or stronger than the average C—C single bond? (d) Based on your answer for part (c), discuss what additional aspects of bonding in butadiene might support the shorter middle C—C bond.
Chapter 2 Solutions
CHEMICAL PRINCIPLES (LL) W/ACCESS
Ch. 2 - Prob. 2A.1ASTCh. 2 - Prob. 2A.1BSTCh. 2 - Prob. 2A.2ASTCh. 2 - Prob. 2A.2BSTCh. 2 - Prob. 2A.3ASTCh. 2 - Prob. 2A.3BSTCh. 2 - Prob. 2A.4ASTCh. 2 - Prob. 2A.4BSTCh. 2 - Prob. 2A.1ECh. 2 - Prob. 2A.2E
Ch. 2 - Prob. 2A.3ECh. 2 - Prob. 2A.4ECh. 2 - Prob. 2A.5ECh. 2 - Prob. 2A.6ECh. 2 - Prob. 2A.7ECh. 2 - Prob. 2A.8ECh. 2 - Prob. 2A.9ECh. 2 - Prob. 2A.10ECh. 2 - Prob. 2A.11ECh. 2 - Prob. 2A.12ECh. 2 - Prob. 2A.13ECh. 2 - Prob. 2A.14ECh. 2 - Prob. 2A.15ECh. 2 - Prob. 2A.16ECh. 2 - Prob. 2A.17ECh. 2 - Prob. 2A.18ECh. 2 - Prob. 2A.19ECh. 2 - Prob. 2A.20ECh. 2 - Prob. 2A.21ECh. 2 - Prob. 2A.22ECh. 2 - Prob. 2A.23ECh. 2 - Prob. 2A.24ECh. 2 - Prob. 2A.25ECh. 2 - Prob. 2A.26ECh. 2 - Prob. 2A.27ECh. 2 - Prob. 2A.28ECh. 2 - Prob. 2A.29ECh. 2 - Prob. 2A.30ECh. 2 - Prob. 2B.1ASTCh. 2 - Prob. 2B.1BSTCh. 2 - Prob. 2B.2ASTCh. 2 - Prob. 2B.2BSTCh. 2 - Prob. 2B.3ASTCh. 2 - Prob. 2B.3BSTCh. 2 - Prob. 2B.4ASTCh. 2 - Prob. 2B.4BSTCh. 2 - Prob. 2B.5ASTCh. 2 - Prob. 2B.5BSTCh. 2 - Prob. 2B.1ECh. 2 - Prob. 2B.2ECh. 2 - Prob. 2B.3ECh. 2 - Prob. 2B.4ECh. 2 - Prob. 2B.5ECh. 2 - Prob. 2B.6ECh. 2 - Prob. 2B.7ECh. 2 - Prob. 2B.8ECh. 2 - Prob. 2B.9ECh. 2 - Prob. 2B.10ECh. 2 - Prob. 2B.11ECh. 2 - Prob. 2B.12ECh. 2 - Prob. 2B.13ECh. 2 - Prob. 2B.14ECh. 2 - Prob. 2B.15ECh. 2 - Prob. 2B.16ECh. 2 - Prob. 2B.17ECh. 2 - Prob. 2B.18ECh. 2 - Prob. 2B.19ECh. 2 - Prob. 2B.20ECh. 2 - Prob. 2B.21ECh. 2 - Prob. 2B.22ECh. 2 - Prob. 2B.23ECh. 2 - Prob. 2B.24ECh. 2 - Prob. 2C.1ASTCh. 2 - Prob. 2C.1BSTCh. 2 - Prob. 2C.2ASTCh. 2 - Prob. 2C.2BSTCh. 2 - Prob. 2C.3ASTCh. 2 - Prob. 2C.3BSTCh. 2 - Prob. 2C.1ECh. 2 - Prob. 2C.2ECh. 2 - Prob. 2C.3ECh. 2 - Prob. 2C.4ECh. 2 - Prob. 2C.5ECh. 2 - Prob. 2C.6ECh. 2 - Prob. 2C.7ECh. 2 - Prob. 2C.8ECh. 2 - Prob. 2C.9ECh. 2 - Prob. 2C.10ECh. 2 - Prob. 2C.11ECh. 2 - Prob. 2C.12ECh. 2 - Prob. 2C.13ECh. 2 - Prob. 2C.14ECh. 2 - Prob. 2C.15ECh. 2 - Prob. 2C.16ECh. 2 - Prob. 2C.17ECh. 2 - Prob. 2C.18ECh. 2 - Prob. 2D.1ASTCh. 2 - Prob. 2D.1BSTCh. 2 - Prob. 2D.2ASTCh. 2 - Prob. 2D.2BSTCh. 2 - Prob. 2D.1ECh. 2 - Prob. 2D.2ECh. 2 - Prob. 2D.3ECh. 2 - Prob. 2D.4ECh. 2 - Prob. 2D.5ECh. 2 - Prob. 2D.6ECh. 2 - Prob. 2D.7ECh. 2 - Prob. 2D.8ECh. 2 - Prob. 2D.9ECh. 2 - Prob. 2D.10ECh. 2 - Prob. 2D.11ECh. 2 - Prob. 2D.12ECh. 2 - Prob. 2D.13ECh. 2 - Prob. 2D.14ECh. 2 - Prob. 2D.15ECh. 2 - Prob. 2D.16ECh. 2 - Prob. 2D.17ECh. 2 - Prob. 2D.18ECh. 2 - Prob. 2D.19ECh. 2 - Prob. 2D.20ECh. 2 - Prob. 2E.1ASTCh. 2 - Prob. 2E.1BSTCh. 2 - Prob. 2E.2ASTCh. 2 - Prob. 2E.2BSTCh. 2 - Prob. 2E.3ASTCh. 2 - Prob. 2E.3BSTCh. 2 - Prob. 2E.4ASTCh. 2 - Prob. 2E.4BSTCh. 2 - Prob. 2E.5ASTCh. 2 - Prob. 2E.5BSTCh. 2 - Prob. 2E.1ECh. 2 - Prob. 2E.2ECh. 2 - Prob. 2E.3ECh. 2 - Prob. 2E.4ECh. 2 - Prob. 2E.5ECh. 2 - Prob. 2E.6ECh. 2 - Prob. 2E.7ECh. 2 - Prob. 2E.8ECh. 2 - Prob. 2E.9ECh. 2 - Prob. 2E.10ECh. 2 - Prob. 2E.11ECh. 2 - Prob. 2E.12ECh. 2 - Prob. 2E.13ECh. 2 - Prob. 2E.14ECh. 2 - Prob. 2E.15ECh. 2 - Prob. 2E.16ECh. 2 - Prob. 2E.17ECh. 2 - Prob. 2E.18ECh. 2 - Prob. 2E.19ECh. 2 - Prob. 2E.20ECh. 2 - Prob. 2E.21ECh. 2 - Prob. 2E.22ECh. 2 - Prob. 2E.23ECh. 2 - Prob. 2E.24ECh. 2 - Prob. 2E.25ECh. 2 - Prob. 2E.26ECh. 2 - Prob. 2E.27ECh. 2 - Prob. 2E.28ECh. 2 - Prob. 2E.29ECh. 2 - Prob. 2E.30ECh. 2 - Prob. 2F.1ASTCh. 2 - Prob. 2F.1BSTCh. 2 - Prob. 2F.2ASTCh. 2 - Prob. 2F.2BSTCh. 2 - Prob. 2F.3ASTCh. 2 - Prob. 2F.3BSTCh. 2 - Prob. 2F.4ASTCh. 2 - Prob. 2F.4BSTCh. 2 - Prob. 2F.1ECh. 2 - Prob. 2F.2ECh. 2 - Prob. 2F.3ECh. 2 - Prob. 2F.4ECh. 2 - Prob. 2F.5ECh. 2 - Prob. 2F.6ECh. 2 - Prob. 2F.7ECh. 2 - Prob. 2F.8ECh. 2 - Prob. 2F.9ECh. 2 - Prob. 2F.10ECh. 2 - Prob. 2F.11ECh. 2 - Prob. 2F.12ECh. 2 - Prob. 2F.13ECh. 2 - Prob. 2F.14ECh. 2 - Prob. 2F.15ECh. 2 - Prob. 2F.16ECh. 2 - Prob. 2F.17ECh. 2 - Prob. 2F.18ECh. 2 - Prob. 2F.19ECh. 2 - Prob. 2F.20ECh. 2 - Prob. 2F.21ECh. 2 - Prob. 2G.1ASTCh. 2 - Prob. 2G.1BSTCh. 2 - Prob. 2G.2ASTCh. 2 - Prob. 2G.2BSTCh. 2 - Prob. 2G.1ECh. 2 - Prob. 2G.2ECh. 2 - Prob. 2G.3ECh. 2 - Prob. 2G.4ECh. 2 - Prob. 2G.5ECh. 2 - Prob. 2G.6ECh. 2 - Prob. 2G.7ECh. 2 - Prob. 2G.8ECh. 2 - Prob. 2G.9ECh. 2 - Prob. 2G.11ECh. 2 - Prob. 2G.12ECh. 2 - Prob. 2G.13ECh. 2 - Prob. 2G.14ECh. 2 - Prob. 2G.15ECh. 2 - Prob. 2G.16ECh. 2 - Prob. 2G.17ECh. 2 - Prob. 2G.18ECh. 2 - Prob. 2G.19ECh. 2 - Prob. 2G.20ECh. 2 - Prob. 2G.21ECh. 2 - Prob. 2G.22ECh. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10ECh. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.19ECh. 2 - Prob. 2.22ECh. 2 - Prob. 2.23ECh. 2 - Prob. 2.24ECh. 2 - Prob. 2.25ECh. 2 - Prob. 2.26ECh. 2 - Prob. 2.27ECh. 2 - Prob. 2.28ECh. 2 - Prob. 2.29ECh. 2 - Prob. 2.30ECh. 2 - Prob. 2.31ECh. 2 - Prob. 2.32ECh. 2 - Prob. 2.33ECh. 2 - Prob. 2.34ECh. 2 - Prob. 2.35ECh. 2 - Prob. 2.36ECh. 2 - Prob. 2.37ECh. 2 - Prob. 2.39ECh. 2 - Prob. 2.40ECh. 2 - Prob. 2.41ECh. 2 - Prob. 2.42ECh. 2 - Prob. 2.43ECh. 2 - Prob. 2.44ECh. 2 - Prob. 2.45ECh. 2 - Prob. 2.46ECh. 2 - Prob. 2.47ECh. 2 - Prob. 2.48ECh. 2 - Prob. 2.49ECh. 2 - Prob. 2.50ECh. 2 - Prob. 2.51ECh. 2 - Prob. 2.52ECh. 2 - Prob. 2.53ECh. 2 - Prob. 2.54ECh. 2 - Prob. 2.55ECh. 2 - Prob. 2.56ECh. 2 - Prob. 2.57ECh. 2 - Prob. 2.58ECh. 2 - Prob. 2.59ECh. 2 - Prob. 2.60ECh. 2 - Prob. 2.61ECh. 2 - Prob. 2.62ECh. 2 - Prob. 2.63ECh. 2 - Prob. 2.64E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The lactic acid molecule, CH3CH(OH)COOH, gives sourmilk its unpleasant, sour taste. (a) Draw the Lewis structurefor the molecule, assuming that carbon always forms fourbonds in its stable compounds. (b) How many π and howmany σ bonds are in the molecule? (c) Which CO bond isshortest in the molecule? (d) What is the hybridization ofatomic orbitals around the carbon atom associated withthat short bond? (e) What are the approximate bond anglesaround each carbon atom in the molecule?arrow_forward2.arrow_forwardConsider the Lewis structure shown below. (a) Does the Lewis structure depict a neutral molecule or anion? If it is an ion, what is the charge on the ion? (b) What hybridizationis exhibited by each of the carbon atoms? (c) Arethere multiple equivalent resonance structures for the species?(d) How many electrons are in the π system of the species?arrow_forward
- Nitrogen trifluoride (NF3) is used in the electronics industry to clean surfaces. NF3 is also a potent greenhouse gas. (A) Draw the Lewis structure of NF3 and determine its molecular geometry. (B) BF3 and NF3 both have three covalently bonded fluorine atoms around a central atom. Do they have the same dipole moment? (C) Could BF3 also behave as a greenhouse gas? Explain why or why not.arrow_forward(a) What is the hybridization of chlorine in Clo4 ? (Type your answer using the format sp3 for sp3.) (b) What is the hybridization of bromine in BrF5? (c) What is the hybridization of bromine in BrO2 ?arrow_forward. Assume that the third-period element phosphorus forms a diatomic molecule, P2, in an analogous way as nitrogen does to form N2. (a) Write the electronic configuration for P2. Use [Ne2] to represent the electron configuration for the first two periods. (b) Calculate its bond order. (c) What are its magnetic properties (diamagnetic or paramagnetic)?arrow_forward
- (a) Methane (CH4) and the perchlorate ion (ClO4- ) are bothdescribed as tetrahedral. What does this indicate about theirbond angles? (b) The NH3 molecule is trigonal pyramidal, while BF3 is trigonal planar. Which of these molecules is flat?arrow_forwardAcetylsalicylic acid, better known as aspirin, has the Lewisstructure (a) What are the approximate values of the bond angles labeled1, 2, and 3? (b) What hybrid orbitals are used about thecentral atom of each of these angles? (c) How many s bondsare in the molecule?arrow_forwardMethyl isocyanate, CH3NCO, was made infamous in 1984when an accidental leakage of this compound from a storagetank in Bhopal, India, resulted in the deaths of about3800 people and severe and lasting injury to many thousandsmore. (a) Draw a Lewis structure for methyl isocyanate.(b) Draw a ball-and-stick model of the structure,including estimates of all the bond angles in the compound.(c) Predict all the bond distances in the molecule.(d) Do you predict that the molecule will have a dipolemoment? Explain.arrow_forward
- Propylene, C3H6,C3H6, is a gas that is used to form the important polymer called polypropylene. Its Lewis structure is (a) What is the total number of valence electrons in the propylene molecule? (b) How many valence electrons are used to make σσ bonds in the molecule? (c) How many valence electrons are used to make ππ bonds in the molecule? (d) How many valence electrons remain in nonbonding pairs in the molecule? (e) What is the hybridization at each carbon atom in the molecule?arrow_forwardPropylene, C3H6, is a gas that is used to form the importantpolymer called polypropylene. Its Lewis structure is given. (a) What is the total number of valence electrons in the propylenemolecule? (b) How many valence electrons are usedto make σ bonds in the molecule? (c) How many valenceelectrons are used to make π bonds in the molecule? (d) Howmany valence electrons remain in nonbonding pairs in themolecule? (e) What is the hybridization at each carbon atomin the molecule?arrow_forwardSodium azide is a shock-sensitive compound that releases N2upon physical impact. The compound is used in automobileairbags. The azide ion is N3-. (a) Draw the Lewis structure of theazide ion that minimizes formal charge (it does not form a triangle).Is it linear or bent? (b) State the hybridization of the centralN atom in the azide ion. (c) How many σ bonds and how manyπ bonds does the central nitrogen atom make in the azide ion?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY