Concept explainers
(a)
Interpretation:
The VSEPR formula and shape for sulfur tetrachloride molecule have to be predicted.
Concept Introduction:
Valence Shell Electron Pair Repulsion model predicts shape by inclusion of bond angles and most distant arrangement of atoms that leads to minimum repulsion. For the molecules that have no lone pairs around the central atom the bonded-atom unshared -pair arrangement is decided by the table as follows:
In order to determine the shape the steps to be followed are indicated as follows:
- 1. Lewis structure of molecule should be written.
- 2. The type electron arrangement around the central atom should be identified around the central atom. This essentially refers to determination of bond pairs and unshared or lone pairs around central atoms.
- 3. Then bonded-atom unshared -pair arrangement that can maximize the distance of electron pairs about central atom determines the shape.
For molecules that have lone pairs around central atom, lone pairs influence shape, because there are no atoms at the positions occupied by these lone pairs. The key rule that governs the molecular shape, in this case, is the extent of lone –lone pair repulsions are far greater than lone bond pair or bond pair-bond pair repulsions. The table that summarized the molecular shapes possible for various combinations of bonded and lone pairs are given as follows:
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 2E.11E
The shape for sulfur tetrachloride molecule is square planar and VSEPR formula is
Explanation of Solution
Sulfur tetrachloride has sulphur as central atom. Sulfur has six valence electrons while chlorine possesses seven valence electrons.
Total valence electrons are sum of the valence electrons on each chlorine and central sulfur in
The skeleton structure in
These 13 electron pairs are assigned as lone pairs of each of the chlorine atoms to satisfy its octet.
Hence, the Lewis structure of
It is evident that in
If lone pairs are represented by E, central atom with A and other attached bond pairs by X, then for any square planar species the VSEPR formula is predicted as
(b)
Interpretation:
The VSEPR formula and shape for iodine trichloride molecule have to be predicted.
Concept Introduction:
Refer to part (a).
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 2E.11E
The shape for iodine trichloride is T-shape and VSEPR formula is
Explanation of Solution
Iodine trichloride has
Total valence electrons are sum of the valence electrons on each chlorine and central iodine in
The skeleton structure in
These 11 electron pairs are allotted as lone pairs of each of the chlorine atoms to satisfy its octet. Hence, the Lewis structure and corresponding T-shape in
It is evident that in
If lone pairs are represented by E, central atom with A and other attached bond pairs by X, then for any bent or T-shaped species the VSEPR formula is predicted to be
(c)
Interpretation:
The VSEPR formula and shape for
Concept Introduction:
Refer to part (a).
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 2E.11E
The shape for
Explanation of Solution
Total valence electrons are sum of the valence electrons on each fluorine and central iodine in
The skeleton structure in
These 14 electron pairs are allotted as lone pairs of each of the fluorine atoms to satisfy its octet. Hence, the Lewis structure and corresponding T-shape in
In
If lone pairs are represented by E, central atom with A and other attached bond pairs by X, then for any square planar species the VSEPR formula is predicted as
(d)
Interpretation:
The VSEPR formula and shape for xenon trioxide molecule have to be predicted.
Concept Introduction:
Refer to part (a).
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 2E.11E
The shape for xenon trioxide molecule is trigonal pyramidal and corresponding VSEPR formula is
Explanation of Solution
Xenon trioxide has
Total valence electrons are sum of the valence electrons on each oxygen atom and central
The skeleton structure in
These 7 electron pairs are allotted as lone pairs of each of the oxygen atoms to satisfy its octet. Thus, the Lewis structure and shape of
It is evident that in
If lone pairs are represented by E, central atom with A and other attached bond pairs by X, then for trigonal pyramidal any species the VSEPR formula is predicted as
Want to see more full solutions like this?
Chapter 2 Solutions
CHEMICAL PRINCIPLES (LL) W/ACCESS
- Please answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardPlease do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forwardPlease answer the question and provide detailed explanations.arrow_forward
- All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward5. Fill in the missing molecules in the following reaction pathway. TMSO Heat + CI then HF O₂N (1.0 equiv) AICI 3 OMearrow_forwarde. O₂N NO2 1. excess H2, Pd/C 2. excess NaNO2, HCI 3. excess CuCNarrow_forward
- Help with a periodic table task.' Procedure Part 1: Customizing a Periodic Table Use a textbook or other valid source to determine which elements are metals, nonmetals, metalloids (called semimetals in some texts), alkali metals, alkaline earth metals, transition metals, halogens, and noble gases. Download and print a copy of the Periodic Table of Elements. Use colored pencils, colorful highlighters, or computer drawing tools to devise a schematic for designating each of the following on the periodic table: Group numbers Period number Labels for these groups: alkali metals, alkaline earth metals, transition metals, inner transition metals (lanthanides and actinides), other metals, metalloids (semimetals), other nonmetals, halogens, and noble gases Metals, nonmetals, and metalloids Note: Write the group and period numbers and color/highlight each element for categorization. Be sure to include a key for the schematic. Take a photo of the completed periodic table and upload the…arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardCan you explain these two problems for mearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)