Introduction To Finite Element Analysis And Design
2nd Edition
ISBN: 9781119078722
Author: Kim, Nam H., Sankar, Bhavani V., KUMAR, Ashok V., Author.
Publisher: John Wiley & Sons,
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 20E
a.
To determine
To find: Displacement element, axial force and wall reaction forces using direct stiffness method for 3 element tapered bar system of the given problem.
b.
To determine
To find: Displacement element, axial force and wall reaction forces using direct stiffness method for 4 element tapered bar system of the given problem.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
. A thin plate is composed of four CST elements, as shown inthe figure below. The plate is subjected to a uniform tensile traction sacting on the right edge and a concentrated force F at the center. Usethe following values: E = 105 GPa, ν = 0.3, t = 5 mm, L = 400 mm,H = 400 mm, s = 50 MPa, and F = 150 kN.(a) Compute all the nodal displacements.(b) For each element, compute the element stress components σxx, σyy,and τxy.(c) For each element, compute the element planar principal normal stressesσ1′ and σ2′.(d) For each element, compute the Von Mises and Tresca effective stresses.
Please help solve using only FEM( Finite Element Method) and the values given, very urgent. Thank you.
A steel column with an outer
diameter of 50 mm and an inner
diameter of 40 mm surrounds a solid
steel bar with a diameter of 30 mm. A
support at one end of the bar and a
hard plate at the other end of the tube
hold them both tightly in place. A torque
T = 650 Nm acting on the end plate
twists the composite bar, which has a
height of 850 mm. Assuming that the
steel's shear modulus is G = 80 GPa,
find the maximum shear stresses in the bar and tube, respectively, and the angle of rotation (in degrees) of the end plate
average shear stress = 50.4 MPa
angle of twist per unit length = 3.06 deg/m
Chapter 2 Solutions
Introduction To Finite Element Analysis And Design
Ch. 2 - Answer the following descriptive questions.
a....Ch. 2 - Use the Galerkin method to solve the following...Ch. 2 - Solve the differential equation in problem 2 using...Ch. 2 - Prob. 4ECh. 2 - Using the Galerkin method, solve the following...Ch. 2 - A one-dimensional heat conduction problem can be...Ch. 2 - Solve the one-dimensional heat conduction problem...Ch. 2 - Prob. 8ECh. 2 - Solve the differential equation in problem 8 for...Ch. 2 - Prob. 10E
Ch. 2 - Prob. 11ECh. 2 - Prob. 12ECh. 2 - Using the Galerkin method, calculate the...Ch. 2 - The boundary-value problem for a clamped-clamped...Ch. 2 - The boundary-value problem for a cantilevered beam...Ch. 2 - Prob. 16ECh. 2 - Consider a finite element with three nodes, as...Ch. 2 - A vertical rod of elastic material is fixed at...Ch. 2 - A bar in the figure is under the uniformly...Ch. 2 - Prob. 20ECh. 2 - A tapered bar with circular cross section is fixed...Ch. 2 - The stepped bar shown in the figure is subjected...Ch. 2 - A bar shown in the figure is modeled using three...Ch. 2 - Consider the tapered bar in problem 17. Use the...Ch. 2 - Consider the tapered bar in problem 21. Use the...Ch. 2 - Consider the uniform bar in the figure. Axial load...Ch. 2 - Determine shape functions of a bar element shown...Ch. 2 - Consider a finite element with three nodes, as...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve the preceding problem if the cross- sectional dimensions are b = 1.5 in. and h = 5.0 in., the gage angle is ß = 750, the measured strains are = 209 × 10-6 and B = -110 × 10, and the material is a magnesium alloy with modulus E = 6.0 X 106 psi and Poisson’s ratio v = 0.35.arrow_forwardSolve the preceding problem if the cube is granite (E = 80 GPa, v = 0.25) with dimensions E = 89 mm and compressive strains E = 690 X l0-6 and = = 255 X 10-6. For part (c) of Problem 7.6-5. find the maximum value of cr when the change in volume must be limited to 0.11%. For part. find the required value of when the strain energy must be 33 J.arrow_forwardA prismatic bar in tension has a length L = 2.0 m and cross-sectional area A =249 mn2. The material of the bar has the stress-strain curve shown in the figure. Determi ne t he elongation 5 of the bar for each of the following axial loads: P = 10 kN, 20 kN, 30 kN, 40 kN. and 45 kN. From these results, plot a diagram of load P versus elongation 5 (load-displacement diagram).arrow_forward
- A solid spherical ball of magnesium alloy (E = 6.5 × l0-6 psi, v = 0.35) is lowered into the ocean to a depth of 8000 ft. The diameter of the ball is 9.0 in. (a) Determine the decrease ?d in diameter, the decrease, ?V in volume, and the strain energy U of the ball. (b) At what depth will the volume change be equal to 0.0324% of the original volume?arrow_forwardA thin-walled rectangular tube has uniform thickness t and dimensions a x b to the median line of the cross section (see figure). How does the shear stress in the tube vary with the ratio = a/b if the total length Lmof the median line of the cross section and the torque T remain constant? From your results, show that the shear stress is smallest when the tube is square (ß = 1).arrow_forwardA shock mount constructed as shown iu the figure is used to support a delicate instrument. The mount consists of an outer steel tube with inside diameter b. a central steel bar of diameter d that supports the load P, and a hollow rubber cylinder (height /r) bonded to the tube and bar (a) Obtain a formula Tor the shear stress t in the rubber at a radial distance r from the center of the shock mount. (b) Obtain a formula Tor the downward displacement S of the central bar due to the load P. assuming that G is the shear modulus of elasticity of the rubber and that the steel tube and bar are rigid.arrow_forward
- The normal strain in the 45n direction on the surface of a circular tube (sec figure) is 880 × 10 when the torque T = 750 lb-in. The tube is made of copper alloy with G = 6.2 × 106 psi and y = 0.35. If the outside diameter d2of the tube is 0.8 in., what is the inside diameter dt? If the allowable normal stress in the tube is 14 ksi, what is the maximum permissible inside diameter d?arrow_forwardRigid bar ACB is supported by an elastic circular strut DC having an outer diameter of 15 in. and inner diameter of 14.4 in. The strut is made of steel with a modulus elasticity of E = 29,000 ksi. Point load P = 5 kips is applied at B. Calculate the change in length of the circular strut DC. What is the vertical displacement of the rigid bar at point B?arrow_forward-7 A steel tube (G = 11.5 x 106 psi) has an outer diameter d2= 2.0 in. and an inner diameter dt=1,5 in. When twisted by a torque 7", the tube develops a maximum normal strain of 170 x 10-6. What is the magnitude of the applied torque T?arrow_forward
- A uniformly tapered lube AB of circular cross section and length L is shown in the figure. The average diameters at the ends are dAand d£= 2d t. Assume E is constant. Find the elongation S of the tube when it is subjected to loads P acting at the ends. Use the following numerical data:^ = 35 mm, L = WO mm, E = 2.1 GPa. and P = 25 tN. Consider the following cases. (a) A hole of constant diameter dAis drilled from B toward A to form a hollow section of length x - U2. (b) A hole of variable diameter a\.x) is drilled, from B toward A to form a hollow section of length x = L/2 and constant thickness t = dA/20.arrow_forward.17 A mountain-bike rider going uphill applies torque T = Fd(F = l5lb, d = 4 in.) to the end of the handlebars ABCD by pulling on the handlebar extenders DE. Consider the right half of the handlebar assembly only (assume the bars are fixed at the fork at A). Segments AB and CD are prismatic with lengths L, = 2 in.andL3 = 8.5 in, and with outer diameters and thicknesses d01 = 1.25 in. 101 = 0.125 in. and d03 = O.87in.,i03 = 0.ll5in, respectively as shown. Segment BC’ of length L, = 1.2 in. however. is tapered, and outer diameter and thickness vary linearly between dimensions at B and C. Consider torsion effects only. Assume G = 4000 ksi is constant. Derive an integral expression for the angle of twist of half of the handlebar tube when it is subjected to torque T = Fd acting at the end. Evaluate ‘b1-, for the given numerical1ues.arrow_forwardA thin-walled aluminum tube of rectangular cross section (sec fig me) has a centerline dimensions b = 6.0 in. and b = 4.0 in. The wall thickness t is constant and equal to 0.25 in. Determine the shear stress in the tube due to a torque T = 15 kip-in. Determine the angle of twist (in degrees) if the length L of the tube is 50 in. and the shear modulus G is 4.0 x 106 psi.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License