Introduction To Finite Element Analysis And Design
Introduction To Finite Element Analysis And Design
2nd Edition
ISBN: 9781119078722
Author: Kim, Nam H., Sankar, Bhavani V., KUMAR, Ashok V., Author.
Publisher: John Wiley & Sons,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 14E

The boundary-value problem for a clamped-clamped beam can be written as

d 4 w d x 4 p ( x ) = 0 , 0 x 1 w ( 0 ) = w ( 1 ) = d w d x ( 0 ) = d w d x ( 1 ) = 1 } boundary conditions . a uniformly distributed load is applied, that is, p ( x ) = p 0 , calculate the approximate beam deflection w ˜ ( x ) using the Galerkin method. Hint: Assume the approximate deflection as w ˜ ( x ) = c ϕ ( x ) = c s 2 ( 1 x ) 2 .

Blurred answer
Students have asked these similar questions
For a uniformly loaded span of a cantilever beam attached to a wall at x = 0 with the free end at x = L, the formula for the vertical displacement from y = 0 under the loaded condition with y the coordinate in the direction opposite that of the load can be written as follows: Y= -(X4 – 4X³ + 6X²) where Y is the vertical displacement, X = x/L, and L is the length of the beam. The formula was put into dimensionless form to answer the following question: What is the shape of the deflection curve when the beam is in its loaded condition and how does it compare with its unloaded perfectly horizontal orientation? The answer is provided graphically in Figure Q4. Figure Q4 shows the vertical deflection of a uniformly loaded cantilever beam and its comparison with the unloaded perfectly horizontal orientation. Write a script to get the same figure as Figure Q4 by solving the following question. 1 · Unloaded cantilever beam 0.5 Uniformly loaded beam -0.5 -1E > -1.5 -2- -2.5 -3 -3.5 0.5 1 1.5…
Ggg
A wooden beam is loaded by a concentrated load P = 1000 N and supported by boundary conditions as shown in Figure Q5(a). The cross-section of the beam is shown in Figure Q5(b). Given that LAB = 1600 mm, LBc = 3400 mm, Bô=10 mm, B₁ = 20 mm, and H = 230 mm, ho=150 mm, h₁ =40 mm, determine the following quantities below:
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Solids: Lesson 53 - Slope and Deflection of Beams Intro; Author: Jeff Hanson;https://www.youtube.com/watch?v=I7lTq68JRmY;License: Standard YouTube License, CC-BY