
Concept explainers
Answer the following descriptive questions.
a. Explain the difference between the essential and natural boundary conditions.
b. The beam-bending problem is governed by a fourth-order differential equation. Explain what are the essential and natural boundary conditions for the beam-bending problem.
c. What is the basic requirement of the trial functions in the Galerkin method?
d. What is the advantage of the Galerkin method compared to other weighted residual methods?
e. A tip load is applied to a cantilevered beam. When
f. A uniformly distributed load is applied to a cantilevered beam. When
g. For a simply supported beam, can
h. List at least three advantages of the finite element method compared to the weighted residual method.
i. Explain why the displacement is continuous across element boundary, but stress is not.
j. If a higher-order element, such as a quadratic element, is used, will stress be continuous across element boundary?
k. A cantilevered beam problem is solved using the Rayleigh-Ritz method with assumed deflection function
l. For the Rayleigh-Ritz method, you can assume the form of solution, such as a combination of polynomials. What is the condition that this form needs to satisfy?
a.

To find:Difference between the essential and natural condition.
Explanation of Solution
Essential boundary conditions:
The essential boundary conditions are the boundary conditions that are sufficient for solving the differential equation completely.Essential or geometric boundary conditions are imposed on the primary variable like displacement.The geometry boundary condition is displacement, slope.
Natural Boundary Conditions:
The natural boundary conditions having boundary conditions linking higher-order derivative terms and are not enough for differential equation solving completely, needful tominimum one essential boundary condition.Natural or force boundary conditions having compulsory on the secondary variables e.g.forces traction bending moment and shear force.
b.

To find:fourth-order bending problems and explain the essential and natural condition for this problem.
Explanation of Solution
Given information:
Here, disscuss the fourth-order bending problems and explain the essential and natural condition By considering the 4th Order ODE and the Elastic Beamsare the linear ODE that has significant applications in materials sciences is that for the deflection of a beam. The beam deflection y(x) is a linear fourth-order ODE can be shown like below DE equation.
Here IfM.I. (moment of inertia) and the E (Young’s modulus) do not be contingent on the beam (homogenous material), then the beam equation shown below:
The homogenous solution can be obtained by inspection—it is a general cubic equation
Free − Considering mainly No applied moments or applied shearing force:
Point Loaded - Considering mainly Local applied moment, displacement specified.
Clamped- Considering mainly Displacement specified; slope specified
c.

To find:Basic requirements of the trail function in the Galerkin method.
Explanation of Solution
The space comprising the trail function is identified as the trial space. The function v ingoing the orthogonality condition in the Galerkin method and the technique of weighted residuals is named test function.The Ψi or wifunctions used as weighted in internal products with the residual.
d.

To find:advantage of the galerkin method compared to other weighted residual methods.
Explanation of Solution
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
Galekin’s Method considering the Weighted residual methods by taking the Idea of theProject residual of D.E.
The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
e.

To find:The solution of the cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E. onto original resembling functions shown below.
Here, to become W’, necessity integrate derivatives in volume by partsintegral done shown below.
Let
f.

To find:the solution of the uniformly distribution load over cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E. Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E. onto original resembling functions and , to become W’, necessity integrate derivatives in volume by parts shown below.
Here, to become W’, necessity integrate derivatives in volume by parts integral done shown below.
Let
g.

ToFind :The solution of the simply supported beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
The approximate solution is split into two parts. In the Galerkin’s method the trial function is considered as the weighting function. The first satisfied the given essential boundary condition exactly.
Here, the trial function is,
h.

To find:The solution of the simply supported beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Given information:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
Explantion:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
i.

To find:Advantage of the galerkin method compared to other weighted residual methods.
Explanation of Solution
Given information:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
Explantion:
The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
j.

To find: the solution of the uniformly distribution load over cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Given information:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
k.

To find:The solution of the uniformly distribution load over cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Given information:
The condition of the Rayleigh Ritz method for the given solution and try to satisfied the condition of Rayleigh Ritz method with assumed deflection function.
In the Galerkin’s method the trial function is considered as the weighting function and can be done approximate solution is split into two parts. The first satisfied the given essential boundary condition exactly. Here, the trial function is, Rayleigh Ritz method with assumed deflection function
L.

To find:The condition of the Rayleigh Ritz method for the given solution and try to satisfied the condition.
Explanation of Solution
The condition of the Rayleigh Ritz method for the given solution and try to satisfied the condition of Rayleigh Ritz method with assumed deflection function.
Rayleigh Ritz method with assumed deflection function It is integral approach method which is useful for solving complex structural problem, encountered in finite element analysis. This method is possible only if a suitable function is available.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction To Finite Element Analysis And Design
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Concepts Of Programming Languages
Thermodynamics: An Engineering Approach
- The manometer fluid in the figure given below is mercury where D = 3 in and h = 1 in. Estimate the volume flow in the tube (ft3/s) if the flowing fluid is gasoline at 20°C and 1 atm. The density of mercury and gasoline are 26.34 slug/ft3 and 1.32 slug/ft3 respectively. The gravitational force is 32.2 ft/s2.arrow_forwardUsing the Bernoulli equation to find the general solution. If an initial condition is given, find the particular solution. y' + xy = xy¯¹, y(0) = 3arrow_forwardTest for exactness. If exact, solve. If not, use an integrating factor as given or obtained by inspection or by the theorems in the text. a. 2xydx+x²dy = 0 b. (x2+y2)dx-2xydy = 0 c. 6xydx+5(y + x2)dy = 0arrow_forward
- Newton's law of cooling. A thermometer, reading 5°C, is brought into a room whose temperature is 22°C. One minute later the thermometer reading is 12°C. How long does it take until the reading is practically 22°C, say, 21.9°C?arrow_forwardSolve a. y' + 2xy = ex-x² b. y' + y sin x = ecosx, y(0) = −1 y(0) = −2.5arrow_forward= MMB 241 Tutorial 3.pdf 2/6 90% + + 5. The boat is traveling along the circular path with a speed of v = (0.0625t²) m/s, where t is in seconds. Determine the magnitude of its acceleration when t = 10 s. 40 m v = 0.0625² 6. If the motorcycle has a deceleration of at = (0.001s) m/s² and its speed at position A is 25 m/s, determine the magnitude of its acceleration when it passes point B. .A 90° 300 m n B 2arrow_forward
- = MMB 241 Tutorial 3.pdf 4/6 67% + 9. The car is traveling along the road with a speed of v = (2 s) m/s, where s is in meters. Determine the magnitude of its acceleration when s = 10 m. v = (2s) m/s 50 m 10. The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t 3/2) rad, where t is in seconds. A ball rolls outward along the radial groove so that its position is r = (0.1+³) m, where t is in seconds. Determine the magnitudes of the velocity and acceleration of the ball when t = 1.5s.arrow_forwardThe population of a certain country is known to increase at a rate proportional to the number of people presently living in the country. If after two years the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the country.arrow_forward= MMB 241 Tutorial 3.pdf 6/6 100% + | 日 13. The slotted link is pinned at O, and as a result of the constant angular velocity *= 3 rad/s it drives the peg P for a short distance along the spiral guide r = (0.40) m, where 0 is in radians. Determine the radial and transverse components of the velocity and acceleration of P at the instant = 1/3 rad. 0.5 m P r = 0.40 =3 rad/sarrow_forward
- = MMB 241 Tutorial 3.pdf 1/6 90% + DYNAMICS OF PARTICLES (MMB 241) Tutorial 3 Topic: Kinematics of Particles:- Path and Polar coordinate systems and general curvilinear QUESTIONS motion. 1. Determine the acceleration at s = 2 m if v = (2 s) m/s², where s is in meters. At s = 0, v = 1 m/s. 3 m 2. Determine the acceleration when t=1s if v = (4t2+2) m/s, where t is in seconds. v=(4²+2) m/s 6 marrow_forward5.112 A mounting bracket for electronic components is formed from sheet metal with a uniform thickness. Locate the center of gravity of the bracket. 0.75 in. 3 in. ༧ Fig. P5.112 1.25 in. 0.75 in. y r = 0.625 in. 2.5 in. 1 in. 6 in. xarrow_forward4-105. Replace the force system acting on the beam by an equivalent resultant force and couple moment at point B. A 30 in. 4 in. 12 in. 16 in. B 30% 3 in. 10 in. 250 lb 260 lb 13 5 12 300 lbarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





