Concept explainers
Answer the following descriptive questions.
a. Explain the difference between the essential and natural boundary conditions.
b. The beam-bending problem is governed by a fourth-order differential equation. Explain what are the essential and natural boundary conditions for the beam-bending problem.
c. What is the basic requirement of the trial functions in the Galerkin method?
d. What is the advantage of the Galerkin method compared to other weighted residual methods?
e. A tip load is applied to a cantilevered beam. When
f. A uniformly distributed load is applied to a cantilevered beam. When
g. For a simply supported beam, can
h. List at least three advantages of the finite element method compared to the weighted residual method.
i. Explain why the displacement is continuous across element boundary, but stress is not.
j. If a higher-order element, such as a quadratic element, is used, will stress be continuous across element boundary?
k. A cantilevered beam problem is solved using the Rayleigh-Ritz method with assumed deflection function
l. For the Rayleigh-Ritz method, you can assume the form of solution, such as a combination of polynomials. What is the condition that this form needs to satisfy?
a.
To find:Difference between the essential and natural condition.
Explanation of Solution
Essential boundary conditions:
The essential boundary conditions are the boundary conditions that are sufficient for solving the differential equation completely.Essential or geometric boundary conditions are imposed on the primary variable like displacement.The geometry boundary condition is displacement, slope.
Natural Boundary Conditions:
The natural boundary conditions having boundary conditions linking higher-order derivative terms and are not enough for differential equation solving completely, needful tominimum one essential boundary condition.Natural or force boundary conditions having compulsory on the secondary variables e.g.forces traction bending moment and shear force.
b.
To find:fourth-order bending problems and explain the essential and natural condition for this problem.
Explanation of Solution
Given information:
Here, disscuss the fourth-order bending problems and explain the essential and natural condition By considering the 4th Order ODE and the Elastic Beamsare the linear ODE that has significant applications in materials sciences is that for the deflection of a beam. The beam deflection y(x) is a linear fourth-order ODE can be shown like below DE equation.
Here IfM.I. (moment of inertia) and the E (Young’s modulus) do not be contingent on the beam (homogenous material), then the beam equation shown below:
The homogenous solution can be obtained by inspection—it is a general cubic equation
Free − Considering mainly No applied moments or applied shearing force:
Point Loaded - Considering mainly Local applied moment, displacement specified.
Clamped- Considering mainly Displacement specified; slope specified
c.
To find:Basic requirements of the trail function in the Galerkin method.
Explanation of Solution
The space comprising the trail function is identified as the trial space. The function v ingoing the orthogonality condition in the Galerkin method and the technique of weighted residuals is named test function.The Ψi or wifunctions used as weighted in internal products with the residual.
d.
To find:advantage of the galerkin method compared to other weighted residual methods.
Explanation of Solution
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
Galekin’s Method considering the Weighted residual methods by taking the Idea of theProject residual of D.E.
The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
e.
To find:The solution of the cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E. onto original resembling functions shown below.
Here, to become W’, necessity integrate derivatives in volume by partsintegral done shown below.
Let
f.
To find:the solution of the uniformly distribution load over cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E. Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E. onto original resembling functions and , to become W’, necessity integrate derivatives in volume by parts shown below.
Here, to become W’, necessity integrate derivatives in volume by parts integral done shown below.
Let
g.
ToFind :The solution of the simply supported beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
The approximate solution is split into two parts. In the Galerkin’s method the trial function is considered as the weighting function. The first satisfied the given essential boundary condition exactly.
Here, the trial function is,
h.
To find:The solution of the simply supported beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Given information:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
Explantion:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
i.
To find:Advantage of the galerkin method compared to other weighted residual methods.
Explanation of Solution
Given information:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
Explantion:
The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
j.
To find: the solution of the uniformly distribution load over cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Given information:
Galekin’s Method considering the Weighted residual methods by taking the Idea of the Project residual of D.E.
The least square and Galerkin methods are more widely used than collection and subdomain, that actually global methods.For least square method the equation solve for always symmetric but tend to be ill-conditioned and Estimated solution wishes very smooth.ForGalerkin’s method the equations solve for typically symmetric but additional robust.Integration by parts produces less smooth version of estimated solution are more useful for FEA method .
k.
To find:The solution of the uniformly distribution load over cantilever beam DE with using Galerkin method the accurate solution or using approximation solution.
Explanation of Solution
Given information:
The condition of the Rayleigh Ritz method for the given solution and try to satisfied the condition of Rayleigh Ritz method with assumed deflection function.
In the Galerkin’s method the trial function is considered as the weighting function and can be done approximate solution is split into two parts. The first satisfied the given essential boundary condition exactly. Here, the trial function is, Rayleigh Ritz method with assumed deflection function
L.
To find:The condition of the Rayleigh Ritz method for the given solution and try to satisfied the condition.
Explanation of Solution
The condition of the Rayleigh Ritz method for the given solution and try to satisfied the condition of Rayleigh Ritz method with assumed deflection function.
Rayleigh Ritz method with assumed deflection function It is integral approach method which is useful for solving complex structural problem, encountered in finite element analysis. This method is possible only if a suitable function is available.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction To Finite Element Analysis And Design
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Concepts Of Programming Languages
Thermodynamics: An Engineering Approach
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY