
Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 100P
A capillary tube of 1.2 mm diameter is immersed vertically in water exposed to the atmosphere. Determine how high water will rise in the tube. Take the contact angle at the inner wall of the tube to be 6° and the surface tension to be 1.00 N/m.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Qu 5 Determine the carburizing time necessary to achieve a carbon concentration of 0.30 wt% at a position 4 mm into an iron carbon alloy that initially contains 0.10 wt% C. The surface concentration is to be maintained at 0.90 wt% C, and the treatment is to be conducted at 1100°C. Use the data for the diffusion of
carbon into y-iron: Do = 2.3 x10-5 m2/s and Qd = 148,000 J/mol. Express your answer in hours to three significant figures.
show all work step by step problems formula material science
(Read Question)
In figure A, the homogeneous rod of constant cross section is attached to unyielding supports. In figure B, a homogeneous bar with a cross-sectional area of 600 mm2 is attached to rigid supports. The bar carries the axial loads P1 = 20 kN and P2 = 60 kN, as shown.1. In figure A, derive the expression that calculates the reaction R1 in terms of P, and the given dimensions.2. In figure B, calculate the reaction (kN) at A.3. In figure B, calculate the maximum axial stress (MPa) in the rod.
Chapter 2 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 2 - What is the difference between intensive and...Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A 75-L container is filled with 1 kg of air at a...Ch. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...
Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - A cylindrical tank of methanol has a mass of 60kg...Ch. 2 - The combustion in a gasoline engine may be...Ch. 2 - Consider Table 2-1 in the textbook, which lists...Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - Prob. 27CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 33CPCh. 2 - Prob. 34EPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Prob. 37CPCh. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Use the coefficient of volume expansion to...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - Prob. 42PCh. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 47EPCh. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52CPCh. 2 - Prob. 53CPCh. 2 - In which medium will sound travel fastest for a...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - Prob. 59PCh. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 61PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 63PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Prob. 69CPCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 72CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 88PCh. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 92CPCh. 2 - Prob. 93CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 97PCh. 2 - Consider a 0.15-mm diameter air bubble a liquid....Ch. 2 - Prob. 99PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 101EPCh. 2 - Prob. 102PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 106PCh. 2 - Prob. 107EPCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The analysis of a propeller that operates in water...Ch. 2 - A closed tank is partially filled with water at...Ch. 2 - Prob. 112PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - A newly produced pipe with diameter of 3m and...Ch. 2 - Prove that the coefficient of volume expansion for...Ch. 2 - Although liquids, in general, are hard to...Ch. 2 - Air expands isentropically from 200psia and 240F...Ch. 2 - Prob. 120PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - Derive a relation for the capillary rise eta...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - A large plate is pulled at a constant spend of...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - A fluid between two very long parallel plates is...Ch. 2 - The rotating parts of a hydroelectric power plant...Ch. 2 - The viscosity of some fluids changes when a strong...Ch. 2 - Prob. 129PCh. 2 - Prob. 130PCh. 2 - Prob. 131PCh. 2 - Oil of viscosity =0.0357Pas and density...Ch. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Prob. 135PCh. 2 - Prob. 136PCh. 2 - Prob. 137PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - The pressure of water is increased from 100kPa to...Ch. 2 - An ideal gas is compressed isothermally from...Ch. 2 - The variation of the density of a fluid with...Ch. 2 - Prob. 143PCh. 2 - The viscosity of liquids and the viscosity of...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - A 0.6-mm-diameter glass tube is inserted into...Ch. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 155PCh. 2 - Prob. 156PCh. 2 - Prob. 157PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (Read image)arrow_forward(Read Image)arrow_forwardM16x2 grade 8.8 bolts No. 25 C1- Q.2. The figure is a cross section of a grade 25 cast-iron pressure vessel. A total of N, M16x2.0 grade 8.8 bolts are to be used to resist a separating force of 160 kN. (a) Determine ks, km, and C. (b) Find the number of bolts required for a load factor of 2 where the bolts may be reused when the joint 19 mm is taken apart. (c) with the number of bolts obtained in (b), determine the realized load factor for overload, the yielding factor of safety, and the separation factor of safety. 19 mmarrow_forward
- Problem4. The thin uniform disk of mass m = 1-kg and radius R = 0.1m spins about the bent shaft OG with the angular speed w2 = 20 rad/s. At the same time, the shaft rotates about the z-axis with the angular speed 001 = 10 rad/s. The angle between the bent portion of the shaft and the z-axis is ẞ = 35°. The mass of the shaft is negligible compared to the mass of the disk. a. Find the angular momentum of the disk with respect to point G, based on the axis orientation as shown. Include an MVD in your solution. b. Find the angular momentum of the disk with respect to point O, based on the axis orientation as shown. (Note: O is NOT the center of fixed-point rotation.) c. Find the kinetic energy of the assembly. z R R 002 2R x Answer: H = -0.046ĵ-0.040 kg-m²/sec Ho=-0.146-0.015 kg-m²/sec T 0.518 N-m =arrow_forwardProblem 3. The assembly shown consists of a solid sphere of mass m and the uniform slender rod of the same mass, both of which are welded to the shaft. The assembly is rotating with angular velocity w at a particular moment. Find the angular momentum with respect to point O, in terms of the axes shown. Answer: Ñ。 = ½mc²wcosßsinßĵ + (}{mr²w + 2mb²w + ½ mc²wcos²ß) k 3 m r b 2 C لا marrow_forwardOnly question 2arrow_forward
- Only question 1arrow_forwardOnly question 3arrow_forwardI have Euler parameters that describe the orientation of N relative to Q, e = -0.7071*n3, e4 = 0.7071. I have Euler parameters that describe the orientation of U relative to N, e = -1/sqrt(3)*n1, e4 = sqrt(2/3). After using euler parameter rule of successive rotations, I get euler parameters that describe the orientation of U relative to Q, e = -0.4082*n1 - 0.4082*n2 - 0.5774*n3. I need euler parameters that describe the orientation of U relative to Q in vector basis of q instead of n. How do I get that?arrow_forward
- Describe at least 4 processes in engineering where control charts are (or should be) appliedarrow_forwardDescribe at least two (2) processes where control charts are (or should be) applied.arrow_forwardProblem 3: A cube-shaped spacecraft is in a circular Earth orbit. Let N (n,) be inertial and the spacecraft is denoted S (ŝ₁). The spacecraft is described such that ¯½º = J ŝ₁ŝ₁ + J ŝ₂§₂ + J §¸Ŝ3 Location of the spacecraft in the orbit is determined by the orbit-fixed unit vectors ê, that are oriented by the angle (Qt), where is a constant angular rate. 52 €3 3> 2t 55 Λ Из At the instant when Qt = 90°, the spacecraft S is oriented relative to the orbit such that 8₁ = 0° Space-three 1-2-3 angles 0₂ = 60° and ES = $₂ rad/s 0₁ = 135° (a) At this instant, determine the direction cosine matrix that describes the orientation of the spacecraft with respect to the inertial frame N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY