Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 34EP
To determine
The energy (in units of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Steam generators are a type of heat exchanges that are used in power plants to generate steam at desired pressure and temperature (Fig. Q1.b). In a steam generator, saturated liquid water at 30°C enters a 60-mm diameter tube at the volume flow rate of 12 L/s. After exchanging heat with hot gas, the water changes to steam and leaves the generator at a pressure of 9 MPa and a temperature of 400°C. During this process, the diameter of the water/steam tube does not change.(iii) What is the exit velocity of the steam?
Steam generators are a type of heat exchanges that are used in power plants to generate steam at desired pressure and temperature (Fig. Q1.b). In a steam generator, saturated liquid water at 30°C enters a 60-mm diameter tube at the volume flow rate of 12 L/s. After exchanging heat with hot gas, the water changes to steam and leaves the generator at a pressure of 9 MPa and a temperature of 400°C. During this process, the diameter of the water/steam tube does not change.(i) Calculate the steam mass flow rate.
Steam generators are a type of heat exchanges that are used in power plants to generate steam at desired pressure and temperature (Fig. Q1.b). In a steam generator, saturated liquid water at 30°C enters a 60-mm diameter tube at the volume flow rate of 12 L/s. After exchanging heat with hot gas, the water changes to steam and leaves the generator at a pressure of 9 MPa and a temperature of 400°C. During this process, the diameter of the water/steam tube does not change.(i) Calculate the steam mass flow rate.
(ii) What is the inlet velocity of the steam?
(iii) What is the exit velocity of the steam?
Chapter 2 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 2 - What is the difference between intensive and...Ch. 2 - For a substance, what is the difference between...Ch. 2 - What is specific gravity? How is it related to...Ch. 2 - The specific weight of a system is defined as the...Ch. 2 - Under what conditions is the ideal-gas assumption...Ch. 2 - What is the difference between R and Ru? How are...Ch. 2 - A 75-L container is filled with 1 kg of air at a...Ch. 2 - A mass of 1-Ibm of argon is maintained at 200 psia...Ch. 2 - What is the specific volume of oxygen at 40 psia...Ch. 2 - A fluid that occupies a volume of 24 L weighs 22 N...
Ch. 2 - The air in an automobile tire with a volume of...Ch. 2 - The pressure in an automobile tire depends on the...Ch. 2 - A spherical balloon with a diameter of 9 m is...Ch. 2 - A cylindrical tank of methanol has a mass of 60kg...Ch. 2 - The combustion in a gasoline engine may be...Ch. 2 - Consider Table 2-1 in the textbook, which lists...Ch. 2 - What is vapor pressure? How is it related to...Ch. 2 - Does water boil at higher temperatures at higher...Ch. 2 - Prob. 22CPCh. 2 - What is cavitation? What causes it?Ch. 2 - Prob. 24EPCh. 2 - A pump is used to transport water to a higher...Ch. 2 - Prob. 26PCh. 2 - Prob. 27CPCh. 2 - List the forms of energy that contribute to the...Ch. 2 - How are heat, internal energy, and thermal energy...Ch. 2 - What is flow energy? Do fluids at rest possess any...Ch. 2 - How do the energies of a flowing fluid and a fluid...Ch. 2 - Using average specific heats, explain how internal...Ch. 2 - Prob. 33CPCh. 2 - Prob. 34EPCh. 2 - Saturated water vapor at 150°C (enthalpy...Ch. 2 - What does the coefficient of volume expansion of a...Ch. 2 - Prob. 37CPCh. 2 - Can the coefficient of compressibility of a fluid...Ch. 2 - Use the coefficient of volume expansion to...Ch. 2 - The volume of an ideal gas is to be reduced by...Ch. 2 - Water at 1 atm pressure is compressed to 400 atm...Ch. 2 - Prob. 42PCh. 2 - Saturated refrigerant-134a liquid at 10C is cooled...Ch. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - The density of seawater at a free surface where...Ch. 2 - Prob. 47EPCh. 2 - A frictionless piston-cylinder device contains 10...Ch. 2 - Reconsider Prob. 2-48. Assuming a bear pressure...Ch. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52CPCh. 2 - Prob. 53CPCh. 2 - In which medium will sound travel fastest for a...Ch. 2 - Prob. 55CPCh. 2 - Prob. 56CPCh. 2 - Prob. 57CPCh. 2 - Is then sonic ve1ocity a specified medium a fixed...Ch. 2 - Prob. 59PCh. 2 - Carbon dioxide enters an adiabatic nozzle at 1200...Ch. 2 - Prob. 61PCh. 2 - Assuming ideal gas behavior, determine the speed...Ch. 2 - Prob. 63PCh. 2 - Steam flows through a device with a pressure of...Ch. 2 - Air expands isentropically from 2.2 MPa 77C to 0.4...Ch. 2 - Repeat Prob. 2-66 for helium gas.Ch. 2 - The Airbus A-340 passenger plane has a maximum...Ch. 2 - Prob. 69CPCh. 2 - What is viscosity? What is the cause of it is...Ch. 2 - How does the kinematic viscosity of (a) liquids...Ch. 2 - Prob. 72CPCh. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - The dynamic viscosity of carbon dioxide at 50°C...Ch. 2 - Consider the flow of a fluid with viscosity ...Ch. 2 - The viscosity of a fluid is to be measured by a...Ch. 2 - A thin 30cm30cm flat plate is pulled at 3 m/s...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - For flow over a plate, the variation of velocity...Ch. 2 - In regions far from the entrance, fluid flow...Ch. 2 - Repeat Prob. 2-83 for umax=6m/s .Ch. 2 - A frustum-shaped body is rotating at a constant...Ch. 2 - A rotating viscometer consists of two concentric...Ch. 2 - A thin plate moves between two parallel,...Ch. 2 - Prob. 88PCh. 2 - A cylinder of mass m slides down from rest in a...Ch. 2 - What is surface tension” What is its cause? Why is...Ch. 2 - What is the capillary effect? What is its cause?...Ch. 2 - Prob. 92CPCh. 2 - Prob. 93CPCh. 2 - Is the capillary rise greater in small- or...Ch. 2 - Determine the gage pressure inside a soap bubble...Ch. 2 - A2.4-in-diameter soap bubble is to be enlarged by...Ch. 2 - Prob. 97PCh. 2 - Consider a 0.15-mm diameter air bubble a liquid....Ch. 2 - Prob. 99PCh. 2 - A capillary tube of 1.2 mm diameter is immersed...Ch. 2 - Prob. 101EPCh. 2 - Prob. 102PCh. 2 - Contrary to what you might expect, a solid steel...Ch. 2 - Nutrients dissolved in water are carried to upper...Ch. 2 - Consider a 55-cm-long journal bearing that is...Ch. 2 - Prob. 106PCh. 2 - Prob. 107EPCh. 2 - A 10-m3 tank contacts nitrogen at 25C and 800kPa....Ch. 2 - The absolute pressure of an automobile tire is...Ch. 2 - The analysis of a propeller that operates in water...Ch. 2 - A closed tank is partially filled with water at...Ch. 2 - Prob. 112PCh. 2 - A rigid tank contains an ideal gas at 300kPa and...Ch. 2 - The composition of a liquid with suspended solid...Ch. 2 - A newly produced pipe with diameter of 3m and...Ch. 2 - Prove that the coefficient of volume expansion for...Ch. 2 - Although liquids, in general, are hard to...Ch. 2 - Air expands isentropically from 200psia and 240F...Ch. 2 - Prob. 120PCh. 2 - Reconsider Prob. 2-120. The shaft now rotates with...Ch. 2 - Derive a relation for the capillary rise eta...Ch. 2 - A 10-cm diameter cylindrical shaft rotates inside...Ch. 2 - A large plate is pulled at a constant spend of...Ch. 2 - Some rocks or bricks contain small air pockets in...Ch. 2 - A fluid between two very long parallel plates is...Ch. 2 - The rotating parts of a hydroelectric power plant...Ch. 2 - The viscosity of some fluids changes when a strong...Ch. 2 - Prob. 129PCh. 2 - Prob. 130PCh. 2 - Prob. 131PCh. 2 - Oil of viscosity =0.0357Pas and density...Ch. 2 - Prob. 133PCh. 2 - Prob. 134PCh. 2 - Prob. 135PCh. 2 - Prob. 136PCh. 2 - Prob. 137PCh. 2 - Liquid water vaporizes into water vaper as it ?aws...Ch. 2 - In a water distribution system, the pressure of...Ch. 2 - The pressure of water is increased from 100kPa to...Ch. 2 - An ideal gas is compressed isothermally from...Ch. 2 - The variation of the density of a fluid with...Ch. 2 - Prob. 143PCh. 2 - The viscosity of liquids and the viscosity of...Ch. 2 - Prob. 145PCh. 2 - Prob. 146PCh. 2 - Prob. 147PCh. 2 - The dynamic viscosity of air at 20C and 200kPa is...Ch. 2 - A viscometer constructed of two 30-cm -long...Ch. 2 - A 0.6-mm-diameter glass tube is inserted into...Ch. 2 - Prob. 151PCh. 2 - Prob. 152PCh. 2 - Prob. 153PCh. 2 - Prob. 155PCh. 2 - Prob. 156PCh. 2 - Prob. 157PCh. 2 - Evan though steel is about 7 to 8 times denser...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An electric motor is used to drive the shaft of a small water pump. During a performance test, the torque on the motor shaft is found to be 5.549 N.m when the motor is drawing 687.12 W of electrical power. What's the rotational speed of the shaft in rpm?arrow_forwardA Ford Explorer can refuel with 10 gallons of gasoline in 2 minutes. Given gasoline has an energy content of 13,000 Wh/kg, express this flow of gasoline in terms of energy flow in watts = joules/secarrow_forwardThe pressure from water mains located at street level may be insufficient for delivering water to the upper floors of tall buildings. In such a case, water may be pumped up to a tank that feeds water to the building by gravity. For an open storage tank atop a 300-ft-tall building, determine the pressure, in lbf/in² , at the bottom of the tank when filled to a depth of 20 ft. The density of water is 62.2 lb/ft³, g = 32.0 ft/s2 , and the local atmospheric pressure is 14.7 lbf/in²arrow_forward
- A compressor requires a mechanical work rate equal to 77 kW for increasing the pressure of 40 kg/min of air from 178 kPa to 685 kPa. The inlet temperature of air is 332 K and thermal dissipation towards the environment amounts to 6 kW. Take the air specific heat constant cp=1.1 kJ/(kg K). If kinetic and potential energy differences can be neglected, determine the air temperature at outlet in K to 1 decimal place.arrow_forward2. The diameters of the suction and discharge pipes of a pump are 15 and 10 cm, respectively. The discharge pressure is read by a gage at a point 1.5 m above the centerline of the pump and the suction pressure is read by a gage 0.6 m below the centerline. If the pressure gage reads 140 kPa and the suction gage reads a vacuum of 21 cm Hg when gasoline is pumped at the rate of 35 l/sec (sg of gasoline is 0.75) a. Find the energy added by a pump. (. b. Find the power delivered to the fluid in kW. c. Find the required rating horsepower of the pump if it has an efficiency of 75% 0.10 mg Pz=140 kPa 1.5 m 0.6 m KD Pj=-0.21 m Hg 0.15 møarrow_forward2. A reciprocating compressor draws in 500 cubic feet per minute of air whose density is 0.079 lb/cu ft and discharges it with a density of 0.304 lbm/cu ft. At the suction, p1 = 15 psia; at discharge, p2 = 80 psia. The increase in the specific internal energy is 33.8 Btu/lbm. Determine the work on the air in Btu/min and in hp. Neglect change in kinetic energy.arrow_forward
- Convert the following units: (a) 1,000 mm water pressure into psi. (b) Heat rate of 2,375 Kcal/KWh into BTU/KWh. (c) 33,000 ft-lbs/min into kg-m/sec. (d) 22,000 metric horsepower in KW. (e) Temperature rise of cooling water thru a heat exchanger of 10oC into degrees Fahrenheit.arrow_forwardFIRST LAW OF THERMODYNAMICS CONSERVATION OF ENERGY – OPEN SYSTEM show solution step by step. answer it in 1hr. pleasearrow_forwardThe properties of a closed system change following the relation betweenpressure and volume as pV = 3.0 where p is in bar V is in m3. Calculate thework done when the pressure increases from 1.5 bar to 7.5 bar.arrow_forward
- Determine the work done by a kilogram of the fluid system as it expands slowly in a piston-cylinder arrangement from an initial pressure and volume of 550 kPa and 0.028 m3 respectively to a final volume of 0.113 m3in accordance with the following defining relations: a.) p = C; b.) pV = C; c.) pV1.4 = C; d.) p = -730V + 690 kpa where V is in m3arrow_forwardEach cylinder of a four-cylinder four-stroke petrol engine has a bore diameter of each is 55 mm and the stroke length for each cylinder piston is 280 mm. During engine testing, the engine runs at 2500 revolutions per minute (rpm) with a pressure-volume indicator diagram showing a mean net area of 6.50 cm² and diagram length of 2.75 cm. For a pressure scale set at 800 kN/m² per cm on the indicator diagram, calculate the indicated power developed by the engine. Give your answer in kilowatts (kW) to 2 decimal places. Peak Pressure Diagram height, cm Pressure versus Volume Indicator Diagram (Pressure scale = 350 kN/m² per cm) Enclosed net area for engine work done Diagram length, cm - m.e.parrow_forwardQ3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License