VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
12th Edition
ISBN: 9781260265521
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 19.165RP
A 4-lb uniform rod is supported by a pin at O and a spring at A and is connected to a dashpot at B. Determine (a) the differential equation of motion for small oscillations, (b) the angle that the rod will form with the horizontal 5 s after end B has been pushed 0.9 in. down and released.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.
A light rod AB of length 600 mm has a fixed hinge at A and a mass of 5 kg concentrated at B. A
vertical spring is attached to point C a distance 400 mm from end A. The spring which extends
25 mm for a direct load of 5 kgf is so adjusted that the rod AB is horizontal in the rest position.
Show that if AB is slightly displaced the rod oscillates in a simple harmonic manner with a
periodic time of about 0.48 s.
A slender, uniform, metal rod with mass M is pivoted without friction about an axis
through its midpoint and perpendicular to the rod. A horizontal spring with force constant
k is attached to the lower end of the rod, with the other end of the spring attached to a
rigid support. If the rod is displaced by a small angle 0 from the vertical and released, show
that it moves in angular SHM and calculate the period. (Hint: Assume that the angle 0 is
small enough for the approximations sin 0 z 0 and cos 0 z 1 to be valid. The motion is
+ w?0 = 0, and the period is then T = 21 )
simple harmonic if
dt2
d²0
:)
4- The block is supported by the spring arrangement as shown.
The block is moved vertically downward from its equilibrium
iggila
position and released. Knowing that the amplitude of the resulting
motion is 45 mm, determine the natural period and the frequency
of the motion. Also, find the maximum velocity and the
maximum acceleration of the block for each case of the following.
16 kN/m
10 ib/in.
16 kN/m
20 lb/in.
: 25 b/in.
35 kg
-16KN/m
16 lb/in.
12 b/in.
20 lb/in.
8 kN/m
kN/m
akg
(a)
(b)
(c)
(d)
Chapter 19 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - Prob. 19.3PCh. 19.1 - Prob. 19.4PCh. 19.1 - Prob. 19.5PCh. 19.1 - A 20-lb block is initially held so that the...Ch. 19.1 - Prob. 19.7PCh. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - Prob. 19.9PCh. 19.1 - A 5-kg fragile glass vase is surrounded by packing...
Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - Prob. 19.15PCh. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - Prob. 19.18PCh. 19.1 - Prob. 19.19PCh. 19.1 - Prob. 19.20PCh. 19.1 - A 50-kg block is supported by the spring...Ch. 19.1 - Prob. 19.22PCh. 19.1 - Two springs with constants k1and k2are connected...Ch. 19.1 - Prob. 19.24PCh. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - Prob. 19.27PCh. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - Prob. 19.31PCh. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Using the data of Table 19.1, determine the period...Ch. 19.1 - Prob. 19.36PCh. 19.2 - Prob. 19.37PCh. 19.2 - Prob. 19.38PCh. 19.2 - A 6-kg uniform cylinder can roll without sliding...Ch. 19.2 - A 6-kg uniform cylinder is assumed to roll without...Ch. 19.2 - Prob. 19.41PCh. 19.2 - Prob. 19.42PCh. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - Prob. 19.46PCh. 19.2 - Prob. 19.47PCh. 19.2 - Prob. 19.48PCh. 19.2 - Prob. 19.49PCh. 19.2 - Prob. 19.50PCh. 19.2 - A thin homogeneous wire is bent into the shape of...Ch. 19.2 - A compound pendulum is defined as a rigid body...Ch. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - Prob. 19.55PCh. 19.2 - Two uniform rods each have a mass m and length I...Ch. 19.2 - Prob. 19.57PCh. 19.2 - A 1300-kg sports car has a center of gravity G...Ch. 19.2 - A 6-lb slender rod is suspended from a steel wire...Ch. 19.2 - A uniform disk of radius r=250 mm is attached at A...Ch. 19.2 - Two uniform rods, each of weight W=24 lb and...Ch. 19.2 - Prob. 19.62PCh. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - Prob. 19.65PCh. 19.2 - A uniform equilateral triangular plate with a side...Ch. 19.2 - Prob. 19.67PCh. 19.2 - Prob. 19.68PCh. 19.3 - Prob. 19.69PCh. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - A uniform disk of radius r and mass m can roll...Ch. 19.3 - Prob. 19.78PCh. 19.3 - Prob. 19.79PCh. 19.3 - Prob. 19.80PCh. 19.3 - A slender 10-kg bar AB with a length of l=0.6 m is...Ch. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - Prob. 19.86PCh. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Two 6-lb uniform semicircular plates are attached...Ch. 19.3 - Prob. 19.92PCh. 19.3 - The motion of the uniform rod AB is guided by the...Ch. 19.3 - Prob. 19.94PCh. 19.3 - Prob. 19.95PCh. 19.3 - Prob. 19.96PCh. 19.3 - Prob. 19.97PCh. 19.3 - Prob. 19.98PCh. 19.4 - Prob. 19.99PCh. 19.4 - Prob. 19.100PCh. 19.4 - Prob. 19.101PCh. 19.4 - Prob. 19.102PCh. 19.4 - Prob. 19.103PCh. 19.4 - Prob. 19.104PCh. 19.4 - Prob. 19.105PCh. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Prob. 19.112PCh. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - Prob. 19.115PCh. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - Prob. 19.120PCh. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - Prob. 19.125PCh. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - A 0.9-kg block B is connected by a cord to a...Ch. 19.5 - Prob. 19.139PCh. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - Prob. 19.144PCh. 19.5 - Prob. 19.145PCh. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - A simplified model of a washing machine is shown....Ch. 19.5 - Prob. 19.150PCh. 19.5 - Prob. 19.151PCh. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - Prob. 19.155PCh. 19.5 - Prob. 19.156PCh. 19.5 - Write the differential equations defining (a) the...Ch. 19.5 - Write the differential equations defining (a) the...Ch. 19 - Prob. 19.159RPCh. 19 - Prob. 19.160RPCh. 19 - Prob. 19.161RPCh. 19 - Prob. 19.162RPCh. 19 - Prob. 19.163RPCh. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - Prob. 19.168RPCh. 19 - Prob. 19.169RPCh. 19 - Prob. 19.170RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two identical circular cylinders of radius r and mass m each, are connected by a spring, as shown below. Derive the equations of motion using Lagrange's equations. Please indicate the lowest natural vibration frequency. (1 =mr?) k marrow_forwardThree cylindrical rollers of equal length and material are arranged as shown in end view below. Cylinders 2A and 2B have radiusr and cylinder 1 has radius 4r. Their axes are parallel to each other and to that of the fixed concave cylindrical surface, of radius 6r, that supports them. They roll without slip. Assuming no damping and following the steps below, determine the frequency of small free rolling oscillations. (a) For rotation 6, of the cylinder 1, determine the resulting rotation of the lower cylinders. [Hint: Does it look like an epicyclic gear train?] When the upper roller rotates with velocity 6, determine the translational and rotational velocities of the centre of mass of the lower rollers. [Hint: In an epicyclic gear train the centres of these would be supported on the planet carrier.] (b) (c) Write an expression for the kinetic energy of the whole system at some instant during the oscillation when the rotational velocity of cylinder 1 is , . (d) Write an expression for…arrow_forwardAs shown in the Fig. 3, the CM of a cylinder of mass m and radius R is connected to the top of hoop of mass m by a spring. The spring constant is assumed to be known and it is denoted by k. At a given moment the system is slightly compressed and then suddenly released. After the release, both rigid objects roll without slipping. Determine the angular frequency of the resulting oscillation. It is assumed that the spring remains horizontal throughout the motion. Figure 3: Coupled Oscillatorarrow_forward
- A uniform rod AB can rotate in a vertical plane about a horizontal axis at C located at a distance c above the mass center G of the rod. For small oscillations determine the value of c for which the frequency of the motion will be maximum.arrow_forwardA uniform 4 lb rod is supported by a pin at 0 and a spring at B and is connected to a damper at A. Determine (a) the differential equation of motion for small oscillations, (b) the angle the rod will make with the horizontal 5 s after end B has been pushed 0.9 pulg. down and released. c = 0.5 lb. s/pie k = 15 lb/pie L/2. L/2 Aarrow_forwardTwo uniform rods, each of weight W = 1.2 lb and length l = 8 in., are welded together to form the assembly shown. Knowing that the constant of each spring is k = 0.6 lb/in. and that end A is given a small displacement and released, determine the frequency of the resulting motion.arrow_forward
- Three cylindrical rollers of equal length and material are arranged as shown in end view below. Cylinders 2a and 2B have radius r and cylinder 1 has radius 4r. Their axes are parallel to each other and to that of the fixed concave cylindrical surface, of radius 6r, that supports them. They roll without slip. Assuming no damping and following the steps below, determine the frequency of small free rolling oscillations. For rotation 6, of the cylinder 1, determine the resulting rotation of the lower cylinders. [Hint: Does it look like an epicyclic gear train?] (a) When the upper roller rotates with velocity 6, determine the translational and rotational velocities of the centre of mass of the lower rollers. [Hint: In an epicyclic gear train the centres of these would be supported on the planet carrier.] (b)arrow_forward2. The stiffness of a close coiled helical spring is such that it deflects 36 mm when an axial load of 10N is applied on the end hook. Calculate (i) the mass to be hung on the spring so that when set vibrating it will make one complete oscillation per second. The mass of the spring is 0.6 kg. Calculate also the maximum velocity and the maximum acceleration of the vibrating mass when initially displaced 12 mm from equilibrium.arrow_forwardQ.1 The system shown below consists of a block of mass m and a cylinder of mass 2m. The block and the cylinder are joined by pulley arrangement as show. The coordinates x and y are dependent in which x = 2y. Use m= 2 kg. The angle 0 is any value between 0 and 90°. If the cylinder is pushed downward 20 mm and released a) find the subsequent response of the block, x(1) b) find the displacement and velocity of the block at t = 1 s. The specific value of k is given in separate excel sheet. K=1985 2m IT, x = 2yarrow_forward
- Problem 8: A spring hangs vertically from a bracket at its unweighted equilibrium length, as shown in the left-most image. An object with mass mm is attached to the lower end of the spring, and it is gently lowered until the spring reaches its new equilibrium length, as shown in the center figure. Referring to the right-most figure, the mass is raised until the spring returns to its original length, and then it is released from rest resulting in vertical oscillations. Part (a) If the spring constant is 7.5 N/m, and the mass of the object is 0.25 kg, find the oscillation amplitude, in meters. Part (b) Find the maximum velocity, in meters per second, of the oscillating mass.arrow_forwardThe system is in static equilibrium position at the instanst given.arrow_forwardA 14-oz sphere A and a 10-oz sphere C are attached to the ends of a rod AC of negligible weight that can rotate in a vertical plane about an axis at B. Determine the period of small oscillations of the rod.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license