VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
12th Edition
ISBN: 9781260265521
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19.4, Problem 19.113P
To determine
Show that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A motor, turning at 1800 rpm, in a machine is slightly out of balance. It causes the machine to
vibrate vertically. In order to measure the amplitude of the machine vibration a device consisting
of a mass is attached to a cantilever beam as shown. The device has a scale so that the amplitude
of the vibration of the mass, 8, can be measured. If 8 = 3.2 mm what is z the amplitude of the
machine vibration. The mass at the end of the cantilever is m = 1 kg and the spring constant of
the cantilever is k = 50 x 10³ N/m.
MASS
SCALE
CANTILEVER
1800
RPH
MOTOR
A block-spring system has a maximum restoring force Fmax = 0.1 N. If the
amplitude of the motion is A = 0.01 m and the mass of the block is m= 400 g
then the angular frequency w is equal to
O 20 rad/s
2.5 rad/s
O 10 rad/s
O 1.25 rad/s
O 5 rad/s
A mass-sr
T1= 0.62 s
T2= 0.54 s
K1= 2440 n/m
Chapter 19 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - Prob. 19.3PCh. 19.1 - Prob. 19.4PCh. 19.1 - Prob. 19.5PCh. 19.1 - A 20-lb block is initially held so that the...Ch. 19.1 - Prob. 19.7PCh. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - Prob. 19.9PCh. 19.1 - A 5-kg fragile glass vase is surrounded by packing...
Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - Prob. 19.15PCh. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - Prob. 19.18PCh. 19.1 - Prob. 19.19PCh. 19.1 - Prob. 19.20PCh. 19.1 - A 50-kg block is supported by the spring...Ch. 19.1 - Prob. 19.22PCh. 19.1 - Two springs with constants k1and k2are connected...Ch. 19.1 - Prob. 19.24PCh. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - Prob. 19.27PCh. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - Prob. 19.31PCh. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Using the data of Table 19.1, determine the period...Ch. 19.1 - Prob. 19.36PCh. 19.2 - Prob. 19.37PCh. 19.2 - Prob. 19.38PCh. 19.2 - A 6-kg uniform cylinder can roll without sliding...Ch. 19.2 - A 6-kg uniform cylinder is assumed to roll without...Ch. 19.2 - Prob. 19.41PCh. 19.2 - Prob. 19.42PCh. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - Prob. 19.46PCh. 19.2 - Prob. 19.47PCh. 19.2 - Prob. 19.48PCh. 19.2 - Prob. 19.49PCh. 19.2 - Prob. 19.50PCh. 19.2 - A thin homogeneous wire is bent into the shape of...Ch. 19.2 - A compound pendulum is defined as a rigid body...Ch. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - Prob. 19.55PCh. 19.2 - Two uniform rods each have a mass m and length I...Ch. 19.2 - Prob. 19.57PCh. 19.2 - A 1300-kg sports car has a center of gravity G...Ch. 19.2 - A 6-lb slender rod is suspended from a steel wire...Ch. 19.2 - A uniform disk of radius r=250 mm is attached at A...Ch. 19.2 - Two uniform rods, each of weight W=24 lb and...Ch. 19.2 - Prob. 19.62PCh. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - Prob. 19.65PCh. 19.2 - A uniform equilateral triangular plate with a side...Ch. 19.2 - Prob. 19.67PCh. 19.2 - Prob. 19.68PCh. 19.3 - Prob. 19.69PCh. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - A uniform disk of radius r and mass m can roll...Ch. 19.3 - Prob. 19.78PCh. 19.3 - Prob. 19.79PCh. 19.3 - Prob. 19.80PCh. 19.3 - A slender 10-kg bar AB with a length of l=0.6 m is...Ch. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - Prob. 19.86PCh. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Two 6-lb uniform semicircular plates are attached...Ch. 19.3 - Prob. 19.92PCh. 19.3 - The motion of the uniform rod AB is guided by the...Ch. 19.3 - Prob. 19.94PCh. 19.3 - Prob. 19.95PCh. 19.3 - Prob. 19.96PCh. 19.3 - Prob. 19.97PCh. 19.3 - Prob. 19.98PCh. 19.4 - Prob. 19.99PCh. 19.4 - Prob. 19.100PCh. 19.4 - Prob. 19.101PCh. 19.4 - Prob. 19.102PCh. 19.4 - Prob. 19.103PCh. 19.4 - Prob. 19.104PCh. 19.4 - Prob. 19.105PCh. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Prob. 19.112PCh. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - Prob. 19.115PCh. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - Prob. 19.120PCh. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - Prob. 19.125PCh. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - A 0.9-kg block B is connected by a cord to a...Ch. 19.5 - Prob. 19.139PCh. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - Prob. 19.144PCh. 19.5 - Prob. 19.145PCh. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - A simplified model of a washing machine is shown....Ch. 19.5 - Prob. 19.150PCh. 19.5 - Prob. 19.151PCh. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - Prob. 19.155PCh. 19.5 - Prob. 19.156PCh. 19.5 - Write the differential equations defining (a) the...Ch. 19.5 - Write the differential equations defining (a) the...Ch. 19 - Prob. 19.159RPCh. 19 - Prob. 19.160RPCh. 19 - Prob. 19.161RPCh. 19 - Prob. 19.162RPCh. 19 - Prob. 19.163RPCh. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - Prob. 19.168RPCh. 19 - Prob. 19.169RPCh. 19 - Prob. 19.170RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A single cylinder engine can be treated as a rotating unbalance model where the mass of the piston, m, acts at an eccentric distance, e which is half of the stroke. Determine the displacement amplitude of the engine in millimetres when it is rotating at a speed of 344.4 rpm. The engine parameters are: Mass of engine, M = 447.8 kg; keq = 220.3 kN/m; ceq = 2843.2 Ns/m; m = 10.6 kg and Stroke (i.e. 2e) = 236 mm. Give your answer to 2 dp. Answer:arrow_forwardThe following vibration system oscillates with a small angle. x = 0.6m, y = 1.8m, k = 18N/m. From the motor: static deflection = 0.2m, forcing frequency = 30 rad/s. If the starting angle from rest is 2 radians (counter-clockwise) and mass A is 10 kilograms, determine: 1. The natural frequency in radians per second. 2. The natural period in second 3. The amplitude of free vibration in meters (reference: neutral position of the spring below), 4. The amplitude of steady-state vibration in meters (reference: neutral position of the spring below) 5. The magnification factor 6. The overall displacement in meters when t= 1 second (reference: neutral position of the spring below).arrow_forward= The equilibrium position of the mass m = 3.8 kg occurs where y = 0 and yB O. When the attachment B is given a steady vertical motion yg = b sin wt, the mass m will acquire a steady vertical oscillation. Specify the circular frequency w for which the oscillations of m tend to become excessively large. The stiffness of the spring is k = 875 N/m, and the mass and friction of the pulley are negligible. cot m B Equilibrium positionarrow_forward
- A spring-mass system K1, m, has a natural frequency of f1. If a second spring K2 is added in parallel with the first spring, the natural frequency is lowered to 1/2f1. Determine K2 in terms of K1.arrow_forwardThe homogeneous disk, of mass-6Kg and radius R-1 m, rolls without slipping over the surface. The system has two springs of constant k-4500N/m and a damper of constant c= 110 Ns/m.. If the system is vibrating with an initial amplitude of 0.2 m, find the frequency of vibration of the system. Show your work. O 19.1 rad/s O 21.7 rad/s O 16.9 rad/s O 146 rad/s Cylinder, mass m ►x(t) k k R C Pure rollingarrow_forwardTwo identical uniform bars are welded together at a right angle and are pivoted about a horizontal axis through point O as shown. Determine the critical driving frequency of the block B which will result in excessively large oscillations of the assembly. The mass of the welded assembly is m.arrow_forward
- A machine weighing 10kN is supported on its foundation by spring mounting. the piston of the machine moves up and down with a harmonic frequency 10 cycles per second. The piston has a weight of 500N and total stroke of 500mm. Determine the maximum force transmitted to the foundation if the total spring stiffness k = 5N/mm. Ignore damping.arrow_forwardA 2-kg block is suspended from a spring having a stiffness of 800 N/m. If the block is given an upward velocity of 4 m/s when it is displaced downward a distance of 150 mm from its equilibrium position. What is the amplitude of the motion? . Assume that positive displacement is downward.arrow_forwardThe figure below shows a simple model of a motor vehicle that can vibrate in the vertical direction while traveling over a rough road. The vehicle has a mass of 1200 kg. The suspension system has a spring constant of 400 kN/m and a damping ratio of ζ = 0.5. If the vehicle speed is 20 km/hr, determine the displacement amplitude of the vehicle. The road surface varies sinusoidally with an amplitude of Y=0.05m and a wavelength of 6 m. (please use the second images' conditions to answer the question above) (Also, please submit screenshot of matlab)arrow_forward
- 5. A mass hangs from a helical spring. The periodic time of free vibration in a vertical direction is 1.25sec. When the mass is at rest the upper end of the spring is made to move with an upward displacement of such that y=5 sin 27t cm, († being the time in second measured from the beginning of motion). Through what height is the mass raised in the first 0.4 second? Find also the amplitude of motion of the mass for steady state vibration.arrow_forwardTwo identical uniform bars are welded together at a right angle and are pivoted about a horizontal axis through point O as shown. Determine the critical driving frequency wc of the block B which will result in excessively large oscillations of the assembly. The mass of the welded assembly is m = 27 kg, the length lis 525 mm, and the spring constant k is 616 N/m. /2 L/2 B Xp = b sin wt Answer: Wc = i rad/s ww.arrow_forwardIf we attach an object weighing 8 lb to a spring, it stretched the latter by 1 ft. We attach a weight of 16 lb to this spring and it comes to rest in its equilibrium position. We assume that there is no damping and an external force F(t) = cos 3t is applied to the system. If the system is put into motion with a downward initial velocity of 2 ft per sec, a. Determine the displacement of the object. [y(t) = - cos 4t + sin 4t + cos 3t ] 4. b. Find the natural frequency of the mass-spring system. [Natural Frequency: o = 4]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY