Concept explainers
Predict/Calculate Two point charges, the first with a charge of +3.13 × 10−6 C and the second with a charge of −4.47 × 10 C, are separated by 25.5 cm. (a) Find the magnitude of the electrostatic force experienced by the positive charge. (b) Is the magnitude of the force experienced by the negative charge greater than, less than, or the same as that experienced by the positive charge? Explain.
Trending nowThis is a popular solution!
Chapter 19 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Microbiology: An Introduction
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Particle A of charge 3.00 104 C is at the origin, particle B of charge 6.00 101 C is at (4.00 m, 0), and particle C of charge 1.00 104 C is at (0, 3.00 in). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? (b) What is the y component of the force exerted by A on C? (c) Kind the magnitude of the force exerted by B on C. (d) Calculate the x component of the force exerted by B on C. (e) Calculate the y component of the force exerted by B on C. (f) Sum the two x components from parts (a) and (d) to obtain the resultant x component of the electric force acting on C. (g) Similarly, find the y component of the resultant force vector acting on C. (h) Kind the magnitude and direction of the resultant electric force acting on C.arrow_forwardParticle A of charge 3.00 104 C is at the origin, particle B of charge 6.00 104 C is at (4.00 m, 0), and particle C of charge 1.00 104 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? (b) What is the y component of the force exerted by A on C? (c) Find the magnitude of the force exerted by B on C. (d) Calculate the x component of the force exerted by B on C. (e) Calculate the y component of the force exerted by B on C. (f) Sum the two x components from parts (a) and (d) to obtain the resultant x component of the electric force acting on C. (g) Similarly, find the y component of the resultant force vector acting on C. (h) Find the magnitude and direction of the resultant electric force acting on C.arrow_forwardAssume the charged objects in Figure OQ23.10 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 an charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1.arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in Figure P19.9. Calculate the total electric force on the 7.00-C charge.arrow_forwardAssume the charged objects in Figure OQ19.15 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 on charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1. Figure OQ19.15arrow_forwardThree point charges are arranged as shown in Figure P19.19. (a) Find the vector electric Field that the 6.00-nC and 3.00-nC charges together create at the origin. (b) Find the vector force on the 5.00-nC charge.arrow_forward
- A 1.75-nC charged particle located at the origin is separated by a distance of 0.0825 m from a 2.88-nC charged particle located farther along the positive x axis. Both particles are held at their locations by an external agent. a. What is the electrostatic force on the 2.88-nC particle? b. What is the electrostatic force on the 1.75-nC particle?arrow_forward(a) Two point charges q1 and q23.00 m apart, and their total charge is 20 C. (a) If the force of repulsion between them is 0.075N, what are magnitudes of the two charges? (b) If one charge attracts the other with a force of 0.150 N, what are the magnitudes of the two charges? Note that you may need to solve a quadratic equation to reach your answer.arrow_forwardTwo point charges qA = 12.0 C and qB = 45.0 C and a third particle with unknown charge qC are located on the x axis. The particle qA is at the origin, and qB is at x = 15.0 cm. The third particle is to be placed so that each particle is in equilibrium under the action of the electric forces exerted by the other two particles. (a) Is this situation possible? If so, is it possible in more than one way? Explain. Find (b) the required location and (c) the magnitude and the sign of the charge of the third particle.arrow_forward
- Two particles with charges q1 and q2 are separated by a distance d, and each exerts an electric force on the other with magnitude FE. a. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be halved? b. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be doubled?arrow_forwardThree equal positive charges q are at the comers of an equilateral triangle of side a as shown in Figure P19.28. Assume the three charges together create an electric field. (a) Sketch the field lines in the plane of the charges. (b) Find the location of one point (other than ) where the electric field is zero. What are (c) the magnitude and (d) the direction of the electric field at P due to the two charges at the base?arrow_forwardA sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning