Concept explainers
Have you ever pulled clothes from a dryer only to have them “cling” together? Have you ever walked across a carpet and had a ’shocking” experience when you touched a doorknob? If so, you already know a lot about state electricity.
Ben Franklin showed that the same kind of spark we experience on a carpet, when scaled up in size, is responsible for bolts of lightning. His insight led to the invention of lightning rods to
Living organisms also use static electricity—in fact, static electricity plays an important role in the pollination process. Imagine a bee busily flitting from flower to flower. As air rushes over its body and wings it acquires an electric charge—just as you do when your feet rub against a carpet. A bee might have only 93.0 pC of charge, but that’s more than enough to attract grains of pollen from a distance, like a charged comb attracting bits of paper. The result is a bee covered with grains of pollen, as illustrated in the accompanying photo, unwittingly transporting pollen from one flower to another. So, the next time you experience annoying static cling in your clothes, just remember that the same force helps pollinate the plants that we all need for life on Earth.
97. • Suppose two bees, each with a charge of 93.0 pC, are separated by a distance of 1.20 cm. Treating the bees as point charges, what is the magnitude of the electrostatic force experienced by the bees? (In comparison, the weight of a 0.140-g bee is 1.37 × 10−3 N.)
- A. 6.01 × 10−17 N
- B. 6.48 × 10−9 N
- C. 5.40 × 10−7 N
- D. 5.81 × 10−3 N
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
Organic Chemistry (8th Edition)
Applications and Investigations in Earth Science (9th Edition)
Chemistry (7th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- An electroscope is a device used to measure the (relative) charge on an object (Fig. P23.20). The electroscope consists of two metal rods held in an insulated stand. The bent rod is fixed, and the straight rod is attached to the bent rod by a pivot. The straight rod is free to rotate. When a positively charged object is brought close to the electroscope, the straight movable rod rotates. Explain your answers to these questions: a. Why does the rod rotate in Figure P23.20? b. If the positively charged object is removed, what happens to the electroscope? c. If a negatively charged object replaces the positively charged object in Figure P23.20, what happens to the electroscope? d. If a charged object touches the top of the fixed conducting rod and is then removed, what happens to the electroscope?arrow_forwardA water molecule is made up of two hydrogen atoms and one oxygen atom, with a total of 10 electrons and 10 protons. The molecule is modeled as a dipole with an effective separation d = 3.9 1012 m between its positive and negative particles. What is the electric potential energy stored in the dipole? What does the sign of your answer mean?arrow_forwardWhy does a car always attract dust right after it is polished? (Note that car wax and car tires are insulators.)arrow_forward
- A sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forwardA proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.arrow_forwardThis afternoon, you have a physics symposium class, and you are the presenter. You will be presenting a topic to physics majors and faculty. You have been so busy that you have not had time to prepare and you dont even have an idea for a topic. You are frantically reading your physics textbook looking for an idea. In your reading, you have learned that the Earth carries a charge on its surface of about 105 C, which results in electric fields in the atmosphere. This gets you very excited about a new theory. Suppose the Moon also carries a charge on the order of 105 C, with the opposite sign! Maybe the orbit of the Moon around the Earth is due to electrical attraction between the Moon and the Earth! Theres an idea for your symposium presentation! You quickly jot down a few notes and run off to your symposium. While you are speaking, you notice one of the professors doing some calculations on a scrap of paper. Uh-oh! He has just raised his hand with a question. Why are you embarrassed?arrow_forward
- Two metal spheres of identical mass m = 4.00 g are suspended by light strings 0.500 m in length. The left-hand sphere carries a charge of 0.800 C, and the right-hand sphere carries a charge of 1.50 C. What is the equilibrium separation between the centers of the two spheres?arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardFour balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forward
- A simple and common technique for accelerating electrons is shown in Figure 18.55, where there is a uniform electric field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole in the positive plate that allows the electrons to continue moving. (a) Calculate the acceleration of the electorn if the field strength is 2.50104 N/C. (b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole.arrow_forwardAn electrophorus is a device developed more than 200 years ago for the purpose of charging objects. The insulator on top of a pedestal is rubbed with a cloth, such as wool (Fig. P23.18A). A conductor is placed on top of the insulator, and the conductor is connected to ground by a conducting wire (Fig. P23.18B). (The conductor has an insulating handle, so charge cannot be transferred between the person and the conductor.) The conductor is then removed (Fig. P23.18C). The conductor may then be used to transfer charge to other objects. If the insulators charge after being Ribbed with the wool is negative, what is the charge of the conductor when it is removed?arrow_forwardTwo large, parallel metal plates, each of area A, are oriented horizontally and separated by a distance 3d. A grounded conducting wire joins them, and initially each plate carries no charge. Now a third identical plate carrying charge Q is inserted between the two plates, parallel to them and located a distance d from the upper plate as shown in Figure P20.84. (a) What induced charge appears on each of the two original plates? (b) What potential difference appears between the middle plate and each of the other plates? Figure P20.84arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning