A galvanic cell with E°cell = 0.30 V can be constructed using an iron electrode in a 1.0 M Fe(NO3)2 solution, and either a tin electrode in a 1.0 M Sn(NO3)2 solution, or a chromium electrode in a 1.0 M Cr(NO3)3 solution—even though Sn2+/Sn and Cr3+/Cr have different standard reduction potentials. Explain and give the overall balanced reaction for each cell.
Interpretation:
To explain the balanced cell reaction of two galvanic cells constructed through the combination of
Concept introduction:
Galvanic cell is an experimental set up used to generated electricity through spontaneous redox reaction. The cell works on the principle of oxidation (anode) and reduction (cathode), taking place simultaneously in a separately location with the transfer of electron between them through an external wire. The standard potential of the electrodes (Eo) were measured in relative with standard hydrogen electrode (SHE) at standard temperature and pressure with electrolyte concentration of 1M and it was tabulated.
In this case two galvanic cells were constructed through the combination of
Answer to Problem 2PPB
Cell-1:
First let us discuss the cell made up of
Then Ecell of the reaction was calculated as follows
Cell-2:
The combination of
Charges in the above reaction are unbalanced. In order to balance the charges, oxidation and reduction half need to be multiplied by a whole number as given below.
Then Ecell of the above reaction can be calculated as follows
Explanation of Solution
Cell-1:
First let us discuss the cell made up of
Then Ecell of the reaction was calculated as follows
Cell-2:
The combination of
Charges in the above reaction are unbalanced. In order to balance the charges, oxidation and reduction half need to be multiplied by a whole number as given below.
Then Ecell of the above reaction can be calculated as follows
In the cell-1, Fe act as anode due to low standard reduction potential than Sn, but in case of cell-2 Fe act as cathode, since the standard reduction potential of Cr is lower than Fe. Even though Sn and Cr have different standard reduction potential, coupling with iron resulted in the same standard cell potential.
Balanced equation of the two cells with same standard potential made up of two combination, such as
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry: Atoms First
- Calculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forwardAn aqueous solution of an unknown salt of vanadium is electrolyzed by a current of 2.50 amps for 1.90 hours. The electroplating is carried out with an efficiency of 95.0%, resulting in a deposit of 2.850 g of vanadium. a How many faradays are required to deposit the vanadium? b What is the charge on the vanadium ions (based on your calculations)?arrow_forward
- Assume the following electrochemical cell simulates the galvanic cell formed by copper and zinc in seawater at pH 7.90 and 25 C. Zn | Zn(OH)2(s) | OH(aq) || Cu(OH)2(s) | Cu(s) a. Write a balanced equation for the reaction that occurs at the cathode. b. Write a balanced equation for the reaction that occurs at the anode. c. Write a balanced chemical equation for the overall reaction. d. Determine the potential (in volts) of the cell.arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which I(aq) is in contact with I2(s) and an electrode in which a chromium strip dips into a solution of Cr3(aq)?arrow_forwardConsider the following galvanic cell: A 15 0-mole sample of NH is added to the Ag compartment (assume 1.00 L of total solution after the addition). The silver ion reacts with ammonia to form complex ions as shown: Ag+(aq)+NH3(aq)AgNH3+(aq)K1=2.1103AgNH3+(aq)+NH3(aq)Ag(NH3)2+(aq)K2=8.2103 Calculate the cell potential after the addition of 15.0 moles of NH3.arrow_forward
- An electrochemical cell consists of a silver metal electrode immersed in a solution with [Ag+] = 1.0 M separated by a porous disk from a copper metal electrode. If the copper electrode is placed in a solution of 5.0 M NH3 that is also 0.010 M in Cu(NH3)42+, what is the cell potential at 25C? Cu2+(aq)+4NH3(aq)Cu(NH3)42+(aq)K=1.01013arrow_forwardIt took 150. s for a current of 1.25 A to plate out 0.109 g of a metal from a solution containing its cations. Show that it is not possible for the cations to have a charge of 1+.arrow_forwardWhat is the maximum work you can obtain from 30.0 g of nickel in the following cell when the cell potential is 0.97 V? Ni(s)Ni2+(aq)Ag+(aq)Ag(s)arrow_forward
- Calculate the standard cell potential of the following cell at 25C. Sn(s)Sn2+(aq)I2(aq)I(aq)arrow_forwardThe cell potential of the following cell at 25C is 0.480 V. ZnZn2+(1M)H+(testsolution)H2(1atm)Pt What is the pH of the test solution?arrow_forwardAn electrochemical cell consists of a nickel metal electrode immersed in a solution with [Ni2+] = 1.0 M separated by a porous disk from an aluminum metal electrode immersed in a solution with [Al3+] = 1.0 M. Sodium hydroxide is added to the aluminum compartment, causing Al(OH)3(s) to precipitate. After precipitation of Al(OH)3 has ceased, the concentration of OH is 1.0 104 M and the measured cell potential is 1.82 V. Calculate the Ksp value for Al(OH)3. Al(OH)3(s)Al3+(aq)+3OH(aq)Ksp=?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning