need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal energy Divide the difference between the binding free energies of the ED1 and ED2 complexes by the thermal energy (at the physiological temperature 310K). Provide a numerical expression with 3 significant figures. The margin of error is 2%. Part C - Required drug concentrations 1 Compute the total concentration of [D1]tot that is needed to bind 90% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l. You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately. Part D - Required drug concentrations 2 Compute the total concentration of [D1]tot that is needed to bind 99% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l. You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately. Part E - Required drug concentrations 3 Compute the total concentration of [D2]tot that is needed to bind 90% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l. You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately. Part F - Required drug concentrations 4 Compute the total concentration of [D2]tot that is needed to bind 99% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l. You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately.
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Part B - Compare difference in free energy to the thermal energy
Part C - Required drug concentrations 1
Compute the total concentration of [D1]tot that is needed to bind 90% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l.
You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately.
Part D - Required drug concentrations 2
Compute the total concentration of [D1]tot that is needed to bind 99% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l.
You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately.
Part E - Required drug concentrations 3
Compute the total concentration of [D2]tot that is needed to bind 90% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l.
You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately.
Part F - Required drug concentrations 4
Compute the total concentration of [D2]tot that is needed to bind 99% of the HIV-RT at the given concentration [E]tot. Provide your answer as a numerical expression with 3 significant figures in the unit mol/l.
You do NOT have to consider competition betwwen the drugs D1 and D2! They are administered separately.
Step by step
Solved in 2 steps with 3 images