Concept explainers
(a)
Interpretation:
The complete balanced equation for the given reaction and the mass percent of oxalic acid has to be found.
Concept Introduction:
Titration is a widely used method for the determination of unknown concentration of an analyte. In order to determine the unknown concentration, the analyte of known volume is titrated with the titrant of known volume and concentration. The unknown concentration of the analyte is found by the following equation.
Where,
This formula is applicable when one mole of analyte is reacting with one mole of the titrant.
After calculating the unknown concentration of the analyte, its weight is gram is calculated.
Mole is the amount of substance having
Mass percent is the one method that is used to express the concentration of substances in a mixture. It is the ratio of weight of a particular component to the total weight of the sample, multiplied by 100.
(b)
Interpretation:
The complete balanced equation for the given reaction and the mass percent of oxalic acid has to be found.
Concept Introduction:
Titration is a widely used method for the determination of unknown concentration of an analyte. In order to determine the unknown concentration, the analyte of known volume is titrated with the titrant of known volume and concentration. The unknown concentration of the analyte is found by the following equation.
Where,
This formula is applicable when one mole of analyte is reacting with one mole of the titrant.
After calculating the unknown concentration of the analyte, its weight is gram is calculated.
Mole is the amount of substance having Avogadro number of particles. The number of moles of a particular substance is calculated by multiplying the volume of the substance and its concentration.
Mass percent is the one method that is used to express the concentration of substances in a mixture. It is the ratio of weight of a particular component to the total weight of the sample, multiplied by 100.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Chemistry: Atoms First
- 1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forwardTriiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: IO3(aq) + I(aq) I3(aq) Triiodide ion concentration is determined by titration with a sodium thiosulfate (Na2S2O3) solution. The products are iodide ion and tetrathionate ion (S4O6). a. Balance the equation for the reaction of IO3 with I ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HQ required to convert all of the IO3 ions to I ions? c. Write and balance the equation for the reaction of S2O32 with I3 in acidic solution. d. A 25.00-mL sample of a 0.0100 M solution of KIO. is reacted with an excess of KI. It requires 32.04 mL of Na2S2O3 solution to titrate the I3 ions present. What is the molarity of the Na2S2O3 solution? e. How would you prepare 500.0 mL of the KIO3 solution in part d using solid KIO3?arrow_forwardCalcium in blood or urine can be determined by precipitation as calcium oxalate, CaC2O4. The precipitate is dissolved in strong acid and titrated with potassium permanganate. The equation for reaction is 2MnO4(aq)+6H+(aq)+5H2C2O4(aq)2Mn2+(aq)+10CO2(g)+8H2O A 24-hour urine sample is collected from an adult patient, reduced to a small volume, and titrated with 26.2 mL of 0.0946 M KMnO4. How many grams of calcium oxalate are in the sample? Normal range for Ca2+ output for an adult is 100 to 300 mg per 24 hour. Is the sample within the normal range?arrow_forward
- Describe in words how you would prepare pure crystalline AgCl and NaNO3 from solid AgNO3 and solid NaCl.arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forwardUse the appropriate tables to calculate H for (a) the reaction between MgC03(s) and a strong acid to give Mg2+(aq), CO2(g), and water. (b) the precipitation of iron(III) hydroxide from the reaction between iron(III) and hydroxide ions.arrow_forward
- The active ingredients of an antacid tablet contained only magnesium hydroxide and aluminum hydroxide. Complete neutralization of a sample of the active ingredients required 48.5 mL of 0.187 M hydrochloric acid. The chloride salts from this neutralization were obtained by evaporation of the filtrate from the titration; they weighed 0. 4200 g. What was the percentage by mass of magnesium hydroxide in the active ingredients of the antacid tablet?arrow_forward2. Equal amounts (moles) of acetic acid(aq) and sodium sulfite, Na2SO3(aq), are mixed. The resulting solution is acidic basic neutralarrow_forwardWrite the net ionic equation for the reaction, if any, that occurs on mixing (a) solutions of sodium hydroxide and magnesium chloride. (b) solutions of sodium nitrate and magnesium bromide. (c) magnesium metal and a solution of hydrochloric acid to produce magnesium chloride and hydrogen. Magnesium metal reacting with HCl.arrow_forward
- An aqueous sample is known to contain either Mg2+ or Ba2+ ions. Treatment of the sample with Na2CO3 produces a precipitate, but treatment with ammonium sulfate does not. Use the solubility rules (see Table 4.1) to determine which cation is present.arrow_forwardCalculate the molarity of AgNO3 in a solution prepared by dissolving 1.44 g AgNO3 in enough water to form 1.00 L solution.arrow_forwardThe molarity of iodine in solution can be determined by titration with arsenious acid, H3AsO4. The unbalanced equation for the reaction is H3AsO3(aq)+I2(aq)+H2O2 I(aq)+H3AsO4(aq)+2 H+(aq)A 243-mL solution of aqueous iodine is prepared by dissolving iodine crystals in water. A fifty-mL portion of the solution requires 15.42 mL of 0.134 M H3AsO3 for complete reaction. What is the molarity of the solution? How many grams of iodine were added to the solution?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax