
Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 18.7, Problem 18.7.1SR
Interpretation Introduction
Interpretation:
Mass of
Concept introduction:
Electrolysis : A nonspontaneousredox reaction drove by using electric energy. Electrolytic cells are theelectrochemical cell which used for electrolysis. Electrolysis is used for the separation of compounds to its corresponding elements, for the separation and purification of metals and for recharging the lead storage battery.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
help
Done
11:14
⚫ worksheets.beyondlabz.com
5 (a). Using the peak information you listed in the tables for
both structures, assign each peak to that portion of the
structure that produces the peak in the NMR spectrum. Draw
this diagram on your own sheet of paper and attach the sketch
of your drawing to this question.
Question 6
5 (b). Using the peak information you listed in the tables for
both structures, assign each peak to that portion of the
structure that produces the peak in the NMR spectrum. Draw
this diagram on your own sheet of paper and attach the sketch
of your drawing to this question.
Question 7
6. Are there any differences between the spectra you obtained
in Beyond Labz and the predicted spectra? If so, what were
the differences?
<
2. Predict the NMR spectra for each of these two
compounds by listing, in the NMR tables below, the
chemical shift, the splitting, and the number of
hydrogens associated with each predicted peak. Sort the
peaks from largest chemical shift to lowest.
**Not all slots must be filled**
Peak
Chemical Shift (d)
5.7
1
Multiplicity
multiplate
..........
5.04
double of doublet
2
4.98
double of doublet
3
4.05
doublet of quartet
4
5
LO
3.80
quartet
1.3
doublet
6
Peak
Chemical Shift (d)
Multiplicity
Chapter 18 Solutions
Chemistry: Atoms First
Ch. 18.1 - Permanganate ion and iodide ion react in basic...Ch. 18.1 - Use the half-reaction method to balance the...Ch. 18.1 - Use the half-reaction method to balance the...Ch. 18.1 - Prob. 1PPCCh. 18.1 - Prob. 18.1.1SRCh. 18.1 - Prob. 18.1.2SRCh. 18.3 - A galvanic cell consists of an Mg electrode in a...Ch. 18.3 - Determine the overall cell reaction and Ecell (at...Ch. 18.3 - A galvanic cell with Ecell = 0.30 V can be...Ch. 18.3 - Prob. 2PPC
Ch. 18.3 - Prob. 18.3WECh. 18.3 - Prob. 3PPACh. 18.3 - Prob. 3PPBCh. 18.3 - Prob. 3PPCCh. 18.3 - Prob. 18.3.1SRCh. 18.3 - Prob. 18.3.2SRCh. 18.3 - Prob. 18.3.3SRCh. 18.3 - Prob. 18.3.4SRCh. 18.4 - Prob. 18.4WECh. 18.4 - Prob. 4PPACh. 18.4 - Prob. 4PPBCh. 18.4 - Prob. 4PPCCh. 18.4 - Prob. 18.5WECh. 18.4 - Prob. 5PPACh. 18.4 - Prob. 5PPBCh. 18.4 - Prob. 5PPCCh. 18.4 - Prob. 18.4.1SRCh. 18.4 - Prob. 18.4.2SRCh. 18.5 - Prob. 18.6WECh. 18.5 - Prob. 6PPACh. 18.5 - Prob. 6PPBCh. 18.5 - Prob. 6PPCCh. 18.5 - Prob. 18.7WECh. 18.5 - Prob. 7PPACh. 18.5 - Prob. 7PPBCh. 18.5 - Prob. 7PPCCh. 18.5 - Prob. 18.5.1SRCh. 18.5 - Prob. 18.5.2SRCh. 18.5 - Prob. 18.5.3SRCh. 18.5 - Prob. 18.5.4SRCh. 18.7 - Prob. 18.8WECh. 18.7 - Prob. 8PPACh. 18.7 - Prob. 8PPBCh. 18.7 - Prob. 8PPCCh. 18.7 - Prob. 18.7.1SRCh. 18.7 - Prob. 18.7.2SRCh. 18.7 - Prob. 18.7.3SRCh. 18 - Balance the following redox equations by the...Ch. 18 - Balance the following redox equations by the...Ch. 18 - In the first scene of the animation, when a zinc...Ch. 18 - What causes the change in the potential of the...Ch. 18 - Why does the color of the blue solution in the...Ch. 18 - Prob. 18.4VCCh. 18 - Define the following terms: anode, cathode, cell...Ch. 18 - Prob. 18.4QPCh. 18 - Prob. 18.5QPCh. 18 - What is a cell diagram? Write the cell diagram for...Ch. 18 - What is the difference between the half-reactions...Ch. 18 - Discuss the spontaneity of an electrochemical...Ch. 18 - Prob. 18.9QPCh. 18 - Prob. 18.10QPCh. 18 - Calculate the standard emf of a cell that uses...Ch. 18 - Prob. 18.12QPCh. 18 - Prob. 18.13QPCh. 18 - Consider the following half-reactions....Ch. 18 - Predict whether NO3 ions will oxidize Mn2+ to MnO4...Ch. 18 - Prob. 18.16QPCh. 18 - Prob. 18.17QPCh. 18 - Prob. 18.18QPCh. 18 - Prob. 18.19QPCh. 18 - Use the information m Table 2.1, and calculate the...Ch. 18 - Prob. 18.21QPCh. 18 - Prob. 18.22QPCh. 18 - Use the standard reduction potentials to find the...Ch. 18 - Calculate G and Kc for the following reactions at...Ch. 18 - Under standard state conditions, what spontaneous...Ch. 18 - Prob. 18.26QPCh. 18 - Balance (in acidic medium) the equation for the...Ch. 18 - Prob. 18.28QPCh. 18 - Prob. 18.29QPCh. 18 - Write the Nernst equation for the following...Ch. 18 - What is the potential of a cell made up of Zn/Zn2+...Ch. 18 - Calculate E, E, and G for the following cell...Ch. 18 - Calculate the standard potential of the cell...Ch. 18 - What is the emf of a cell consisting of a Pb2+/Pb...Ch. 18 - Prob. 18.35QPCh. 18 - Calculate the emf of the following concentration...Ch. 18 - What is a battery? Describe several types of...Ch. 18 - Explain the differences between a primary galvanic...Ch. 18 - Discuss the advantages and disadvantages of fuel...Ch. 18 - The hydrogen-oxygen fuel cell is described in...Ch. 18 - Calculate the standard emf of the propane fuel...Ch. 18 - What is the difference between a galvanic cell...Ch. 18 - Prob. 18.43QPCh. 18 - Calculate the number of grams of copper metal that...Ch. 18 - Prob. 18.45QPCh. 18 - Consider the electrolysis of molten barium...Ch. 18 - Prob. 18.47QPCh. 18 - Prob. 18.48QPCh. 18 - Prob. 18.49QPCh. 18 - How many faradays of electricity are required to...Ch. 18 - Calculate the amounts of Cu and Br2 produced in...Ch. 18 - Prob. 18.52QPCh. 18 - Prob. 18.53QPCh. 18 - A constant electric current flows for 3.75 h...Ch. 18 - What is the hourly production rate of chlorine gas...Ch. 18 - Chromium plating is applied by electrolysis to...Ch. 18 - The passage of a current of 0.750 A for 25.0 min...Ch. 18 - A quantity of 0.300 g of copper was deposited from...Ch. 18 - In a certain electrolysis experiment, 1.44 g of Ag...Ch. 18 - Prob. 18.60QPCh. 18 - Prob. 18.61QPCh. 18 - Prob. 18.62QPCh. 18 - Tarnished silver contains Ag2S. The tarnish can be...Ch. 18 - Prob. 18.64QPCh. 18 - For each of the following redox reactions, (i)...Ch. 18 - Prob. 18.66QPCh. 18 - Prob. 18.67QPCh. 18 - Prob. 18.68QPCh. 18 - Prob. 18.69QPCh. 18 - Prob. 18.70QPCh. 18 - Prob. 18.71QPCh. 18 - Prob. 18.72QPCh. 18 - Prob. 18.73QPCh. 18 - Prob. 18.74QPCh. 18 - A galvanic cell consists of a silver electrode in...Ch. 18 - Explain why chlorine gas can be prepared by...Ch. 18 - Prob. 18.77QPCh. 18 - Prob. 18.78QPCh. 18 - Prob. 18.79QPCh. 18 - Prob. 18.80QPCh. 18 - Prob. 18.81QPCh. 18 - Prob. 18.82QPCh. 18 - An acidified solution was electrolyzed using...Ch. 18 - Prob. 18.84QPCh. 18 - Consider the oxidation of ammonia....Ch. 18 - Prob. 18.86QPCh. 18 - Prob. 18.87QPCh. 18 - Prob. 18.88QPCh. 18 - Prob. 18.89QPCh. 18 - Prob. 18.90QPCh. 18 - Prob. 18.91QPCh. 18 - Prob. 18.92QPCh. 18 - An aqueous solution of a platinum salt is...Ch. 18 - Prob. 18.94QPCh. 18 - Prob. 18.95QPCh. 18 - Prob. 18.96QPCh. 18 - Prob. 18.97QPCh. 18 - A silver rod and a SHE are dipped into a saturated...Ch. 18 - Prob. 18.99QPCh. 18 - Prob. 18.100QPCh. 18 - The magnitudes (but not the signs) of the standard...Ch. 18 - Prob. 18.102QPCh. 18 - Given the standard reduction potential for Au3+ in...Ch. 18 - Prob. 18.104QPCh. 18 - Prob. 18.105QPCh. 18 - Prob. 18.106QPCh. 18 - Prob. 18.107QPCh. 18 - Prob. 18.108QPCh. 18 - Prob. 18.109QPCh. 18 - Prob. 18.110QPCh. 18 - Prob. 18.111QPCh. 18 - In recent years there has been much interest in...Ch. 18 - Prob. 18.113QPCh. 18 - Prob. 18.114QPCh. 18 - Prob. 18.115QPCh. 18 - Prob. 18.116QPCh. 18 - Prob. 18.117QPCh. 18 - A galvanic cell using Mg/Mg2+ and Cu/Cu2+...Ch. 18 - Prob. 18.119QPCh. 18 - Prob. 18.120QPCh. 18 - Lead storage batteries arc rated by ampere-hours,...Ch. 18 - Use Equations 14.10 and 18.3 to calculate the emf...Ch. 18 - Prob. 18.123QPCh. 18 - A 9.00 102 mL amount of 0.200 M MgI2 solution was...Ch. 18 - Prob. 18.125QPCh. 18 - Which of the components of dental amalgam...Ch. 18 - Calculate the equilibrium constant for the...Ch. 18 - Prob. 18.128QPCh. 18 - Prob. 18.129QPCh. 18 - Prob. 18.130QPCh. 18 - Prob. 18.131QPCh. 18 - Prob. 18.1KSPCh. 18 - Prob. 18.2KSPCh. 18 - Prob. 18.3KSPCh. 18 - Prob. 18.4KSP
Knowledge Booster
Similar questions
- Interpreting NMR spectra is a skill that often requires some amount of practice, which, in turn, necessitates access to a collection of NMR spectra. Beyond Labz Organic Synthesis and Organic Qualitative Analysis have spectral libraries containing over 700 1H NMR spectra. In this assignment, you will take advantage of this by first predicting the NMR spectra for two closely related compounds and then checking your predictions by looking up the actual spectra in the spectra library. After completing this assignment, you may wish to select other compounds for additional practice. 1. Write the IUPAC names for the following two structures: Question 2 Question 3 2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled**arrow_forward11:14 ... worksheets.beyondlabz.com 3. To check your predictions, click this link for Interpreting NMR Spectra 1. You will see a list of all the - compounds in the spectra library in alphabetical order by IUPAC name. Hovering over a name in the list will show the structure on the chalkboard. The four buttons on the top of the Spectra tab in the tray are used to select the different spectroscopic techniques for the selected compound. Make sure the NMR button has been selected. 4. Scroll through the list of names to find the names for the two compounds you have been given and click on the name to display the NMR spectrum for each. In the NMR tables below, list the chemical shift, the splitting, and the number of hydrogens associated with each peak for each compound. Compare your answers to your predictions. **Not all slots must be filled** Peak Chemical Shift (d) Multiplicity 1 2 3 4 5arrow_forwardО δα HO- H -Br δα HO-- + + -Br [B] 8+ HO- -Br δα नarrow_forward
- 1/2 - 51% + » GAY Organic Reactions Assignment /26 Write the type of reaction that is occurring on the line provided then complete the reaction. Only include the major products and any byproducts (e.g. H₂O) but no minor products. Please use either full structural diagrams or the combination method shown in the lesson. Skeletal/line diagrams will not be accepted. H3C 1. 2. CH3 A Acid OH Type of Reaction: NH Type of Reaction: + H₂O Catalyst + HBr 3. Type of Reaction: H3C 4. Type Reaction: 5. H3C CH2 + H2O OH + [0] CH3 Type of Reaction: 6. OH CH3 HO CH3 + Type of Reaction: 7. Type of Reaction: + [H]arrow_forwardhumbnai Concentration Terms[1].pdf ox + New Home Edit Sign in Comment Convert Page Fill & Sign Protect Tools Batch +WPS A Free Trial Share Inter Concreting Concentration forms. Hydrogen peroxide is a powerful oxidizing agent wed in concentrated solution in rocket fuels and in dilute solution as a hair bleach. An aqueous sulation of H2O2 is 30% by mass and has density of #liligime calculat the Ⓒmolality ⑥mole fraction of molarity. 20 9. B. A sample of Commercial Concentrated hydrochloric ETarrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forward
- Would the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward(a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forwardDraw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY