(a)
Interpretation: In the standard state condition the following species should be identify which shows the reducing agent in nature.
Concept Introduction:
A reducing agent is the chemical species that under goes a
We can say it one compound in an oxidation – reduction (redox) reaction.
The reducing agent is losing electron and it said to be oxidized.
To identify: The following species is identify which shows the reducing agent in nature in standard state condition.
(b)
Interpretation: In the standard state condition the following species should be identify which shows the reducing agent in nature.
Concept Introduction:
A reducing agent is the chemical species that under goes a chemical reaction which losses one or more electrons to another chemical species or atom.
We can say it one compound in an oxidation – reduction (redox) reaction.
The reducing agent is losing electron and it said to be oxidized.
To identify: The following species is identify which shows the reducing agent in nature in standard state condition.
(c)
Interpretation: In the standard state condition the following species should be identify which shows the reducing agent in nature.
Concept Introduction:
A reducing agent is the chemical species that under goes a chemical reaction which losses one or more electrons to another chemical species or atom.
We can say it one compound in an oxidation – reduction (redox) reaction.
The reducing agent is losing electron and it said to be oxidized.
To identify: The following species is identify which shows the reducing agent in nature in standard state condition.
(d)
Interpretation: In the standard state condition the following species should be identify which shows the reducing agent in nature.
Concept Introduction:
A reducing agent is the chemical species that under goes a chemical reaction which losses one or more electrons to another chemical species or atom.
We can say it one compound in an oxidation – reduction (redox) reaction.
The reducing agent is losing electron and it said to be oxidized.
To identify: The following species is identify which shows the reducing agent in nature in standard state condition.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Chemistry: Atoms First
- Calculate the standard cell potential of the following cell at 25C. Cr(s)Cr3(aq)Hg22(aq)Hg(l)arrow_forwardFor each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forward
- At 298 K, the solubility product constant for Pb(IO3)2 is 2.6 1013, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction Pb(IO3)2(s)+2ePb(s)+2IO3(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions, and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/Pb(IO3)2 electrode in a 3.5 103 M solution of NaIO3.arrow_forwardAt 298 K, the solubility product constant for PbC2O4 is 8.5 1010, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction PbC2O4(s)+2ePb(s)+C2O42(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/PbC2O4 electrode in a 0.025 M solution of Na2C2O4.arrow_forwardCalculate the standard cell potential of the cell corresponding to the oxidation of oxalic acid, H2C2O4, by permanganate ion. MnO4. 5H2C2O4(aq)+2MnO4(aq)+6H+(aq)10CO2(g)+2Mn2+(aq)+8H2O(l) See Appendix C for free energies of formation: Gf for H2C2O4(aq) is 698 kJ.arrow_forward
- What is the standard cell potential you would obtain from a cell at 25C using an electrode in which I(aq) is in contact with I2(s) and an electrode in which a chromium strip dips into a solution of Cr3(aq)?arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forwardA solution contains the ions H+, Ag+, Pb2+, and Ba2+, each at a concentration of 1.0 M. (a) Which of these ions would be reduced first at the cathode during an electrolysis? (b) After the first ion has been completely removed by electrolysis, which is the second ion to be reduced? (c) Which, if any, of these ions cannot be reduced by the electrolysis of the aqueous solution?arrow_forward
- What is the cell potential (Ecell) of a spontaneous cell that is run at 25C and contains [Cr3+] = 0.10 M and [Ag+] = 1.0 104 M?arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forwardAt 298 K, the solubility product constant for solid Ba(IO3)2 is 1.5 109. Use the standard reduction potential of Ba2+(aq) to find the standard potential for the half-reaction Ba(IO3)2(s)+2eBa(s)+2IO3(aq)arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning