Concept explainers
Interpretation:
The amount of calcium in the given sample of blood has to be calculated using the principles of titrimetry.
Concept Introduction:
Titration is a widely used method for the determination of unknown concentration of an analyte. In order to determine the unknown concentration, the analyte of known volume is titrated with the titrant of known volume and concentration. The unknown concentration of the analyte is found by the following equation.
Where,
This formula is applicable when one mole of analyte is reacting with one mole of the titrant.
After calculating the unknown concentration of the analyte, its weight is gram is calculated.
Mole is the amount of substance having
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Chemistry: Atoms First
- You are given four different aqueous solutions and told that they each contain NaOH, Na2CO3, NaHCO3, or a mixture of these solutes. You do some experiments and gather these data about the samples. Sample A: Phenolphthalein is colorless in the solution. Sample B: The sample was titrated with HCl until the pink color of phenolphthalein disappeared, then methyl orange was added. The solution became pink. Methyl orange changes color from pH 3.01 (red) to pH 4.4 (orange). Sample C: Equal volumes of the sample were titrated with standardized acid. Using phenolphthalein as an indicator required 15.26 mL of standardized acid to change the phenolphthalein color. The other sample required 17.90 mL for a color change using methyl orange as the indicator. Sample D: Two equal volumes of the sample were titrated with standardized HCl. Using phenolphthalein as the indicator, it took 15.00 mL of acid to reach the equivalence point; using methyl orange as the indicator required 30.00 mL HCl to achieve neutralization. Identify the solute in each of the solutions.arrow_forwardThe Handbook of Chemistry and Physics (http://openstaxcollege.org/l/16Handbook) gives solubilities of the following compounds in grams per 100 mL of water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each. (a) BaSiF6, 0.026 g/100 mL (contains SiF62- ions) (b) Ce(IO3)4, 1.5102 g/100 mL (c) Gd2(SO4)3, 3.98 g/100 mL (d) (NH4)2PtBr6, 0.59 g/100 mL (contains PtBr62- ions)arrow_forwardUse the solubility rules (Table 4.1) to decide which of the following compounds are expected to be soluble and which insoluble. a AgBr b Ca(NO3)2 c MgI2 d PbSO4arrow_forward
- Solubility and Solubility Product You put 0.10-mol samples of KNO3, (NH4)2S, K2S, MnS, AgCl, and BaSO4 into separate flasks and add 1.0 L of water to each one. Then you stir the solutions for 5 minutes at room temperature. Assume that you have 1.0 L of solution in each case. a Are there any beakers where you would observe solid still present? How do you know? b Can you calculate the potassium ion concentration, K+, for the solutions of KNO3 and K2S? If so, do the calculations, and then compare these K+ concentrations. c For the solutions of (NH4)2S, K2S, and MnS, how do the concentrations of sulfide ion, S2, compare? (You dont need to calculate an answer at this point; just provide a rough comparison.) Be sure to justify your answer. d Are there any cases where you need more information to calculate the sulfide-ion concentration for the solutions of (NH4)2S, K2S, and MnS from part c? If so, what additional information do you need? e Consider all of the solutions listed at the beginning of this problem. For which ones do you need more information than is given in the question to determine the concentrations of the ions present? Where can you find this information? f How is the solubility of an ionic compound related to the concentrations of the ions of the dissolved compound in solution?arrow_forwardA 1.0-L sample of 1.0 M HCl solution has a 10.0 A current applied for 45 minutes. What is the pH of the solution after the electricity has been turned off?arrow_forwardAssign the oxidation numbers of all atoms in the following species. (a) PF5 (b) Na2CrO4 (c) NO2arrow_forward
- Magnesite (magnesium carbonate, MgCO3) is a common magnesium mineral. From the solubility product constant, find the solubility of magnesium carbonate in grams per liter of water.arrow_forwardSome metals, such as thallium, can be oxidized to more than one oxidation state. Obtain the balanced net ionic equations for the following oxidation reduction reactions, in which nitric acid is reduced to nitric oxide, NO. a Oxidation of thallium metal to thallium(I) ion by nitric acid. b Oxidation of thallium(I) ion to thallium(III) ion by nitric acid. c Oxidation of thallium metal to thallium(III) by nitric acid. [Consider adding the a and b equations.]arrow_forwardMost barium compounds are very poisonous; however, barium sulfate is often administered internally as an aid in the X-ray examination of the lower intestinal tract (Figure 15.4). This use of BaSO4 is possible because of its low solubility. Calculate the molar solubility of BaSO4 and the mass of barium present in 1.00 L of water saturated with BaSO4.arrow_forward
- The iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forwardWhen aluminum foil is placed in hydrochloric acid, nothing happens for the first 30 seconds or so. This is followed by vigorous bubbling and the eventual disappearance of the foil. Explain these observations.arrow_forwardWrite the equation for the reaction, if any, that occurs when each of the following experiments is performed under standard conditions. (a) Crystals of iodine are added to an aqueous solution of potassium bromide. (b) Liquid bromine is added to an aqueous solution of sodium chloride. (c) A chromium wire is dipped into a solution of nickel(II) chloride.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning