
Starting Out with C++ from Control Structures to Objects (9th Edition)
9th Edition
ISBN: 9780134498379
Author: Tony Gaddis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 9PC
Program Plan Intro
Rainfall Statistics Modification
Program Plan:
IntList.h:
- Include the required specifications into the program.
- Define a class template named “IntList”.
- Declare the member variables “value” and “*next” in structure named “ListNode”.
- Declare the constructor, copy constructor, destructor, and member functions in the class.
- Declare a class template and define a function named “appendNode()” to insert the node at end of the list.
- Declare the structure pointer variables “newNode” and “dataPtr” for the structure named “ListNode”.
- Assign the value “num” to the variable “newNode” and assign null to the variable “newNode”.
- Using “if…else” condition check whether the list is empty or not, if the “head” is empty then make a new node into “head” pointer. Otherwise, make a loop to find last node in the loop.
- Assign the value of “newNode” into the variable “dataPtr”.
- Declare a class template and define a function named “print()” to print the values in the list.
- Declare the structure pointer “dataPtr” for the structure named “ListNode”.
- Initialize the variable “dataPtr” with the “head” pointer.
- Check whether the list is empty or not; if the list is empty then display the values of the list.
- Declare a class template and define a function named “insertNode()” used to insert a value into the list.
- Declare the structure pointer variables “newNode”, “dataPtr”, and “prev” for the structure named “ListNode”.
- Make a “newNode” value into the received variable value “num”.
- Using “if…else” condition to check whether the list is empty or not.
- If the list is empty then initialize “head” pointer with the value of “newNode” variable.
- Otherwise, make a “while” loop to test whether the “num” value is less than the list values or not.
- Use “if…else” condition to initialize the value into list.
- Declare a class template and define a function named “deleteNode()” to delete a value from the list.
- Declare the pointer variables “dataPtr”, and “prev” for the structure named “ListNode”.
- Using “if…else” condition to check whether the “head” value is equal to “num” or not.
- Initialize the variable “dataPtr” with the value of the variable “head”.
- Remove the value using “delete” operator and reassign the “head” value into the “dataPtr”.
- If the “num” value not equal to the “head” value, then define the “while” loop to assign the “dataPtr” into “prev”.
- Use “if” condition to delete the “prev” pointer.
- Declare a class template and define a function named “getTotal()” to calculate total value in a list.
- Define a variable named “total” and initialize it to “0” in type of template.
- Define a pointer variable “nodePtr” for the structure “ListNode” and initialize it to be “NULL”.
- Assign the value of “head” pointer into “nodePtr”.
- Define a “while” loop to calculate “total” value of the list.
- Return a value of “total” to the called function.
- Declare a class template and define a function named “numNodes()” to find the number of values that are presented in the list.
- Declare a variable named “count” in type of “integer”.
- Define a pointer variable “nodePtr” and initialize it to be “NULL”.
- Assign a pointer variable “head” to the “nodePtr”.
- Define a “while” loop to traverse and count the number of elements in the list.
- Declare a class template and define a function named “getAverage()”to find an average value of elements that are presented in list.
- Declare a class template and define a function named “getLargest()”to find largest element in the list.
- Declare a template variable “largest” and pointer variable “nodePtr” for the structure.
- Using “if” condition, assign the value of “head” into “largest” variable.
- Using “while” loop, traverse the list until list will be empty.
- Using “if” condition, check whether the value of “nodePtr” is greater than the value of “largest” or not.
- Assign address of “nodePtr” into “nodePtr”.
- Return a value of “largest” variable to the called function.
- Declare a class template and define a function named “getSmallest()” to find largest element in the list.
- Declare a template variable “smallest” and pointer variable “nodePtr” for the structure.
- Using “if” condition, assign the value of “head” into “smallest” variable.
- Using “while” loop, traverse the list until list will be empty.
- Using “if” condition, check the value of “nodePtr” is smaller than the value of “smallest”.
- Assign address of “nodePtr” into “nodePtr”.
- Return a value of “smallest” variable to the called function.
- Declare a class template and define a function named “getSmallestPosition()” to find the position of smallest value in the list.
- Declare a template variable “smallest” and pointer variable “nodePtr” for the structure.
- Using “while” loop traverses the list until the list will be empty.
- Using “if” condition, find the position of “smallest” value in the list.
- Return the value of “position” to the called function.
- Declare a class template and define a function named “getLargestPosition()” to find the position of largest value in the list.
- Declare a template variable “largest” and pointer variable “nodePtr” for the structure.
- Using “while” loop traverses the list until the list will be empty.
- Using “if” condition, find the position of “largest” value in the list.
- Return the value of “position” to the called function.
- Define the destructor to destroy the values in the list.
- Declare the structure pointer variables “dataPtr”, and “nextNode” for the structure named “ListNode”.
- Initialize the “head” value into the “dataPtr”.
- Define a “while” loop to make the links of node into “nextNode” and remove the node using “delete” operator.
main.cpp:
- Include the required header files into the program.
- Declare a variable “months” in type of integer.
- Read the value of “months” from user and using “while” loop to validate the data entered by user.
- Declare an object named “rainfall” for the class “IntList”.
- Using “for” loop, read an input for every month from user.
- Append the value entered from user into the list.
- Make a call to “getTotal()”, “getAverage()”, “getLargest()”, “getSmallest()”, “getLargestPosition()”, and “getSmallestPosition()” function and display the values on the screen.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need to make a parallel version of this sequential code
I need to make a parallel version of this sequential code.
Benefits of using arrays as instance variables: What are the advantages of incorporating arrays as instance variables within a class?
Initializing and managing arrays: How do you initialize and manage arrays within class constructors and mutators (setters)?
Example of using arrays as instance variables: Share an example where you have used arrays as instance variables and discuss its application in a real-world scenario.
Common mistakes with arrays as instance variables: What are some common mistakes to avoid when working with arrays as instance variables?
Information hiding violations: What is the potential violation of information hiding when using arrays as instance variables? How can this be resolved?
Chapter 18 Solutions
Starting Out with C++ from Control Structures to Objects (9th Edition)
Ch. 18.1 - Prob. 18.1CPCh. 18.1 - Prob. 18.2CPCh. 18.1 - Prob. 18.3CPCh. 18.1 - Prob. 18.4CPCh. 18.2 - Prob. 18.5CPCh. 18.2 - Prob. 18.6CPCh. 18.2 - Prob. 18.7CPCh. 18.2 - Prob. 18.8CPCh. 18.2 - Prob. 18.9CPCh. 18.2 - Prob. 18.10CP
Ch. 18 - Prob. 1RQECh. 18 - Prob. 2RQECh. 18 - Prob. 3RQECh. 18 - Prob. 4RQECh. 18 - Prob. 5RQECh. 18 - Prob. 6RQECh. 18 - Prob. 7RQECh. 18 - Prob. 8RQECh. 18 - Prob. 9RQECh. 18 - Prob. 10RQECh. 18 - Prob. 11RQECh. 18 - Prob. 12RQECh. 18 - Prob. 13RQECh. 18 - Prob. 14RQECh. 18 - Prob. 15RQECh. 18 - Prob. 16RQECh. 18 - Prob. 17RQECh. 18 - Prob. 18RQECh. 18 - Prob. 19RQECh. 18 - Prob. 20RQECh. 18 - Prob. 21RQECh. 18 - Prob. 22RQECh. 18 - Prob. 23RQECh. 18 - Prob. 24RQECh. 18 - Prob. 25RQECh. 18 - T F The programmer must know in advance how many...Ch. 18 - T F It is not necessary for each node in a linked...Ch. 18 - Prob. 28RQECh. 18 - Prob. 29RQECh. 18 - Prob. 30RQECh. 18 - Prob. 31RQECh. 18 - Prob. 32RQECh. 18 - Prob. 33RQECh. 18 - Prob. 34RQECh. 18 - Prob. 35RQECh. 18 - Prob. 1PCCh. 18 - Prob. 2PCCh. 18 - Prob. 3PCCh. 18 - Prob. 4PCCh. 18 - Prob. 5PCCh. 18 - Prob. 6PCCh. 18 - Prob. 7PCCh. 18 - List Template Create a list class template based...Ch. 18 - Prob. 9PCCh. 18 - Prob. 10PCCh. 18 - Prob. 11PCCh. 18 - Prob. 12PCCh. 18 - Prob. 13PCCh. 18 - Prob. 14PCCh. 18 - Prob. 15PC
Knowledge Booster
Similar questions
- Do you think that computers should replace teachers? Give three references with your answer.arrow_forwardIs online learning or face to face learning better to teach students around the around the world? Give reasons for your answer and provide two references with your response. What are benefits of both online learning and face to face learning ? Give two references with your answer. How does online learning and face to face learning affects students around the world? Give two references with your answer.arrow_forwardExplain Five reasons if computers should replace teachers. Provide three references with your answer. List three advantages and three disadvantages face to face learning and online learning may have on children. Provide two references with your answer.arrow_forward
- You were requested to design IP addresses for the following network using the address block 10.10.10.0/24. Specify an address and net mask for each network and router interfacearrow_forwardFor the following network, propose routing tables in each of the routers R1 to R5arrow_forwardFor the following network, propose routing tables in each of the routers R1 to R5arrow_forward
- Using R language. Here is the information link. http://www.cnachtsheim-text.csom.umn.edu/Kutner/Chapter%20%206%20Data%20Sets/CH06PR18.txtarrow_forwardUsing R languagearrow_forwardHow can I type the Java OOP code by using JOptionPane with this following code below: public static void sellCruiseTicket(Cruise[] allCruises) { //Type the code here }arrow_forward
- Draw a system/level-0 diagram for this scenario: You are developing a new customer relationship management system for the BEC store, which rents out movies to customers. Customers will provide comments on new products, and request rental extensions and new products, each of which will be stored into the system and used by the manager for purchasing movies, extra copies, etc. Each month, one employee of BEC will select their favorite movie pick of that week, which will be stored in the system. The actual inventory information will be stored in the Entertainment Tracker system, and would be retrieved by this new system as and when necessary. Example of what a level-0 diagram looks like is attached.arrow_forwardWhat is the value of performing exploratory data analysis in designing data visualizations? What are some examples?arrow_forwardDraw a level-0 diagram for this scenario: You are developing a new customer relationship management system for the BEC store, which rents out movies to customers. Customers will provide comments on new products, and request rental extensions and new products, each of which will be stored into the system and used by the manager for purchasing movies, extra copies, etc. Each month, one employee of BEC will select their favorite movie pick of that week, which will be stored in the system. The actual inventory information will be stored in the Entertainment Tracker system, and would be retrieved by this new system as and when necessary.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTProgramming with Microsoft Visual Basic 2017Computer ScienceISBN:9781337102124Author:Diane ZakPublisher:Cengage LearningC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage Learning
- Microsoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT

Programming with Microsoft Visual Basic 2017
Computer Science
ISBN:9781337102124
Author:Diane Zak
Publisher:Cengage Learning

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr