Starting Out with C++ from Control Structures to Objects (9th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
9th Edition
ISBN: 9780134498379
Author: Tony Gaddis
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 3PC
Program Plan Intro

Linked List Copy Constructor

Program Plan:

“IntList.h”:

  • Include the required specifications into the program.
  • Define a class named “IntList”.
    • Declare the member variables “value” and “*next” in structure named “ListNode”.
    • Declare the constructor, copy constructor, destructor, and member functions in the class.

“IntList.cpp”:

  • Include the required header files into the program.
  • Define a copy constructor named “IntList()” which takes an address of object for the “IntList” class as “const”.
    • Declare a structure pointer variable “nodePtr” and initialize it to be “nullptr”.
    • Assign “obj.head” value into the received variable “nodePtr”.
    • Make a “while” loop to copy the received values into “nodePtr”.
      •  Make a call to “appendNode()” to insert values to “nodePtr” and initialize address of “next” into “nodePtr”.
  • Define a function named “appendNode()” to insert the node at end of the list.
    • Declare the structure pointer variables “newNode” and “dataPtr” for the structure named “ListNode”.
    • Assign the value “num” to the variable “newNode” and assign null to the variable “newNode”.
    • Using “if…else” condition check whether the list is empty or not, if the “head” is empty then make a new node into “head” pointer. Otherwise, make a loop to find last node in the loop.
    • Assign the value of “dataPtr” into the variable “newNode”.
  • Define a function named “display()” to print the values in the list.
    • Declare the structure pointer “dataPtr” for the structure named “ListNode”.
    • Initialize the variable “dataPtr” with the “head” pointer.
    • Make a loop “while” to display the values of the list.
  • Define a function named “insertNode()” to insert a value into the list.
    • Declare the structure pointer variables “newNode”, “dataPtr”, and “prev” for the structure named “ListNode”.
    • Make a “newNode” value into the received variable value “num”.
    • Use “if…else” condition to check whether the list is empty or not.
      • If the list is empty then initialize “head” pointer with the value of “newNode” variable.
      • Otherwise, make a “while” loop to test whether the “num” value is less than the list values or not.
      • Use “if…else” condition to initialize the value into list.
  • Define a function named “deleteNode()” to delete a value from the list.
    • Declare the structure pointer variables “dataPtr”, and “prev” for the structure named “ListNode”.
    • Use “if…else” condition to check whether the “head” value is equal to “num” or not.
      • Initialize the variable “dataPtr” with the value of the variable “head”.
      • Remove the value using “delete” operator and reassign the “head” value into the “dataPtr”.
      • If the “num” value not equal to the “head” value, then define the “while” loop to assign the “dataPtr” into “prev”.
      • Use “if” condition to delete the “prev” pointer.
  • Define the destructor to destroy the list values from the memory.
    • Declare the structure pointer variables “dataPtr”, and “nextNode” for the structure named “ListNode”.
    • Initialize the variable “dataPtr” with the “head” pointer.
    • Define a “while” loop to make the links of node into “nextNode” and remove the node using “delete” operator.

“Main.cpp”:

  • Include the required header files into the program.
  • Declare an object named “obj” for the class “IntList”.
  • Make a call to functions for insert and append operations.
  • Make a call to the “print” function to display the list on the screen.
  • Declare another object “obj1” and pass the “obj” as argument for copy constructor.
  • Make a call to the “print” function to display the copied list on the screen.

Blurred answer
Students have asked these similar questions
Nearest smaller element def nearest_smaller(items): Given a list of integer items, create and return a new list of the same length but where each element has been replaced with the nearest element in the original list whose value is smaller. If no smaller elements exist because that element is the minimum of the original list, the element in the result list should remain as that same minimum element.If there exist smaller elements equidistant in both directions, you must resolve this by using the smaller of these two elements. This again makes the expected results unique for every possible value of items, which is necessary for the automated testing framework to work at all. Being permissive in what you accept while being restrictive in what you emit is a pretty good principle to follow in all walks of life, not just in programming. items Expected result [42, 42, 42] [42, 42, 42] [42, 1, 17] [1, 1, 1] [42, 17, 1] [17, 1, 1] [6, 9, 3, 2] [3, 3, 2, 2] [5, 2, 10, 1, 13, 15,…
After a tuple is created, its items can be changed. True False    A tuple's items can be access by square brackets, similar to lists. True  False
Nearest smaller element def nearest_smaller(items): Given a list of integer itema, create and return a new list of the same length but where each element has been replaced with the nearest element in the original list whose value is smaller. If no smaller elements exist because that element is the minimum of the original list, the element in the result list should remain as that same minimum element. If there exist smaller elements equidistant in both directions, you must resolve this by using the smaller of these two elements. This again makes the expected results unique for every possible value of items, which is necessary for the automated testing framework to work at all. Being permissive in what yvou accept while being restrictive in what you emit is a pretty good principle to follow in all walks of life, not just in programming. Expected result items [42, 42, 421 [42, 42, 42] [42, 1, 17] (1, 1, 1] [42, 17, 1] [17, 1, 1] [6, 9, 3, 2] [3, 3, 2, 2] [5, 2, 10, 1, 13, 15, 14, 5, 11,…
Knowledge Booster
Background pattern image
Computer Science
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education