![Starting Out with C++ from Control Structures to Objects (9th Edition)](https://www.bartleby.com/isbn_cover_images/9780134498379/9780134498379_largeCoverImage.gif)
Starting Out with C++ from Control Structures to Objects (9th Edition)
9th Edition
ISBN: 9780134498379
Author: Tony Gaddis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 5PC
Program Plan Intro
List Search
Program Plan:
“IntList.h”:
- Include the required specifications into the program.
- Define a class named “IntList”.
- Declare the member variables “value” and “*next” in structure named “ListNode”.
- Declare the constructor, copy constructor, destructor, and member functions in the class.
“IntList.cpp”:
- Include the required header files into the program.
- Define a copy constructor named “IntList()” which takes an address of object for the “IntList” class as “const”.
- Declare a structure pointer variable “nodePtr” and initialize it to be “nullptr”.
- Assign “obj.head” value into the received variable “nodePtr”.
- Make a “while” loop to copy the received values into “nodePtr”.
- Make a call to “appendNode()” to insert values to “nodePtr” and initialize address of “next” into “nodePtr”.
- Define a function named “appendNode()” to insert the node at end of the list.
- Declare the structure pointer variables “newNode” and “dataPtr” for the structure named “ListNode”.
- Assign the value “num” to the variable “newNode” and assign null to the variable “newNode”.
- Using “if…else” condition check whether the list is empty or not, if the “head” is empty then make a new node into “head” pointer. Otherwise, make a loop to find last node in the loop.
- Assign the value of “dataPtr” into the variable “newNode”.
- Define a function named “print()”to print the values in the list.
- Declare the structure pointer “dataPtr” for the structure named “ListNode”.
- Initialize the variable “dataPtr” with the “head” pointer.
- Make a loop “while” to display the values of the list.
- Define a function named “insertNode()” to insert a value into the list.
- Declare the structure pointer variables “newNode”, “dataPtr”, and “prev” for the structure named “ListNode”.
- Make a “newNode” value into the received variable value “num”.
- Use “if…else” condition to check whether the list is empty or not.
- If the list is empty then initialize “head” pointer with the value of “newNode” variable.
- Otherwise, make a “while” loop to test whether the “num” value is less than the list values or not.
- Use “if…else” condition to initialize the value into list.
- Define a function named “deleteNode()” to delete a value from the list.
- Declare the structure pointer variables “dataPtr”, and “prev” for the structure named “ListNode”.
- Use “if…else” condition to check whether the “head” value is equal to “num” or not.
- Initialize the variable “dataPtr” with the value of the variable “head”.
- Remove the value using “delete” operator and reassign the “head” value into the “dataPtr”.
- If the “num” value not equal to the “head” value, then define the “while” loop to assign the “dataPtr” into “prev”.
- Use “if” condition to delete the “prev” pointer.
- Define a function named “reverse()” to reverse the values in a list.
- Declare the pointer variables “newNode”, “newHead”, “nodePtr”, and “tempPtr” for the structure named “ListNode”.
- Initialize the variable “nodePtr” with the value of the variable “head”.
- Define a “while” loop to allocate “newNode” variable.
- Create a “newNode” for the structure “ListNode”.
- Store the value of “nodePtr” into “newNode” and assign address as null to the “newNode” pointer.
- Using “if…else” condition swap the values of “newHead” and “newNode”.
- Assign the address of “next” node into “nodePtr”.
- Initialize the variable “head” with the value of the variable “newHead”.
- Define a function named “destroy()” to destroy the list values from the memory.
- Declare the structure pointer variables “dataPtr”, and “nextNode” for the structure named “ListNode”.
- Initialize the variable “dataPtr” with the “head” pointer.
- Define a “while” loop to make the links of node into “nextNode” and remove the node using “delete” operator.
- Define a function “search()” to find the argument value of “num” in the list.
- Declare a variable “count” in type of “int”.
- Declare a structure pointer variable “*dataPtr” for the structure named “ListNode”.
- Define a “while” loop to search the value in the list.
- Using “if…else” statement, check whether the value of “dataPtr” in the list or not.
- If the condition is “true”, return the value “count” variable.
- Otherwise, point the “next” value of “dataPtr” and then increment the value of “count” variable.
- Using “if…else” statement, check whether the value of “dataPtr” in the list or not.
- Return a value “-1” to the function call.
- Define the destructor to call the member function “destroy()” in the list.
“Main.cpp”:
- Include the required header files into the program.
- Declare an object named “obj” for the class “IntList”.
- Make a call to functions for insert and append operations.
- Make a call to the “print()” function to display the list on the screen.
- Make a call for “search()” function to search a value in a list.
- Using “if…else” statement, the position of the value displayed on the screen.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
solve this questions for me .
a) first player is the minimizing player. What move should be chosen?b) What nodes would not need to be examined using the alpha-beta pruning procedure?
Consider the problem of finding a path in the grid shown below from the position S to theposition G. The agent can move on the grid horizontally and vertically, one square at atime (each step has a cost of one). No step may be made into a forbidden crossed area. Inthe case of ties, break it using up, left, right, and down.(a) Draw the search tree in a greedy search. Manhattan distance should be used as theheuristic function. That is, h(n) for any node n is the Manhattan distance from nto G. The Manhattan distance between two points is the distance in the x-directionplus the distance in the y-direction. It corresponds to the distance traveled along citystreets arranged in a grid. For example, the Manhattan distance between G and S is4. What is the path that is found by the greedy search?(b) Draw the search tree in an A∗search. Manhattan distance should be used as the
Chapter 18 Solutions
Starting Out with C++ from Control Structures to Objects (9th Edition)
Ch. 18.1 - Prob. 18.1CPCh. 18.1 - Prob. 18.2CPCh. 18.1 - Prob. 18.3CPCh. 18.1 - Prob. 18.4CPCh. 18.2 - Prob. 18.5CPCh. 18.2 - Prob. 18.6CPCh. 18.2 - Prob. 18.7CPCh. 18.2 - Prob. 18.8CPCh. 18.2 - Prob. 18.9CPCh. 18.2 - Prob. 18.10CP
Ch. 18 - Prob. 1RQECh. 18 - Prob. 2RQECh. 18 - Prob. 3RQECh. 18 - Prob. 4RQECh. 18 - Prob. 5RQECh. 18 - Prob. 6RQECh. 18 - Prob. 7RQECh. 18 - Prob. 8RQECh. 18 - Prob. 9RQECh. 18 - Prob. 10RQECh. 18 - Prob. 11RQECh. 18 - Prob. 12RQECh. 18 - Prob. 13RQECh. 18 - Prob. 14RQECh. 18 - Prob. 15RQECh. 18 - Prob. 16RQECh. 18 - Prob. 17RQECh. 18 - Prob. 18RQECh. 18 - Prob. 19RQECh. 18 - Prob. 20RQECh. 18 - Prob. 21RQECh. 18 - Prob. 22RQECh. 18 - Prob. 23RQECh. 18 - Prob. 24RQECh. 18 - Prob. 25RQECh. 18 - T F The programmer must know in advance how many...Ch. 18 - T F It is not necessary for each node in a linked...Ch. 18 - Prob. 28RQECh. 18 - Prob. 29RQECh. 18 - Prob. 30RQECh. 18 - Prob. 31RQECh. 18 - Prob. 32RQECh. 18 - Prob. 33RQECh. 18 - Prob. 34RQECh. 18 - Prob. 35RQECh. 18 - Prob. 1PCCh. 18 - Prob. 2PCCh. 18 - Prob. 3PCCh. 18 - Prob. 4PCCh. 18 - Prob. 5PCCh. 18 - Prob. 6PCCh. 18 - Prob. 7PCCh. 18 - List Template Create a list class template based...Ch. 18 - Prob. 9PCCh. 18 - Prob. 10PCCh. 18 - Prob. 11PCCh. 18 - Prob. 12PCCh. 18 - Prob. 13PCCh. 18 - Prob. 14PCCh. 18 - Prob. 15PC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- whats for dinner? pleasearrow_forwardConsider the follow program that prints a page number on the left or right side of a page. Define and use a new function, isEven, that returns a Boolean to make the condition in the if statement easier to understand. ef main() : page = int(input("Enter page number: ")) if page % 2 == 0 : print(page) else : print("%60d" % page) main()arrow_forwardWhat is the correct python code for the function def countWords(string) that will return a count of all the words in the string string of workds that are separated by spaces.arrow_forward
- Consider the following program that counts the number of spaces in a user-supplied string. Modify the program to define and use a function, countSpaces, instead. def main() : userInput = input("Enter a string: ") spaces = 0 for char in userInput : if char == " " : spaces = spaces + 1 print(spaces) main()arrow_forwardWhat is the python code for the function def readFloat(prompt) that displays the prompt string, followed by a space, reads a floating-point number in, and returns it. Here is a typical usage: salary = readFloat("Please enter your salary:") percentageRaise = readFloat("What percentage raise would you like?")arrow_forwardassume python does not define count method that can be applied to a string to determine the number of occurances of a character within a string. Implement the function numChars that takes a string and a character as arguments and determined and returns how many occurances of the given character occur withing the given stringarrow_forward
- Consider the ER diagram of online sales system above. Based on the diagram answer the questions below, a) Based on the ER Diagram, determine the Foreign Key in the Product Table. Just mention the name of the attribute that could be the Foreign Key. b) Mention the relationship between the Order and Customer Entities. You can use the following: 1:1, 1:M, M:1, 0:1, 1:0, M:0, 0:M c) Is there a direct relationship that exists between Store and Customer entities? Answer Yes/No? d) Which of the 4 Entities mention in the diagram can have a recursive relationship? e) If a new entity Order_Details is introduced, will it be a strong entity or weak entity? If it is a weak entity, then mention its type?arrow_forwardNo aiarrow_forwardGiven the dependency diagram of attributes {C1,C2,C3,C4,C5) in a table shown in the following figure, (the primary key attributes are underlined)arrow_forward
- What are 3 design techniques that enable data representations to be effective and engaging? What are some usability considerations when designing data representations? Provide examples or use cases from your professional experience.arrow_forward2D array, Passing Arrays to Methods, Returning an Array from a Method (Ch8) 2. Read-And-Analyze: Given the code below, answer the following questions. 2 1 import java.util.Scanner; 3 public class Array2DPractice { 4 5 6 7 8 9 10 11 12 13 14 15 16 public static void main(String args[]) { 17 } 18 // Get an array from the user int[][] m = getArray(); // Display array elements System.out.println("You provided the following array "+ java.util.Arrays.deepToString(m)); // Display array characteristics int[] r = findCharacteristics(m); System.out.println("The minimum value is: " + r[0]); System.out.println("The maximum value is: " + r[1]); System.out.println("The average is: " + r[2] * 1.0/(m.length * m[0].length)); 19 // Create an array from user input public static int[][] getArray() { 20 21 PASSTR2222322222222222 222323 F F F F 44 // Create a Scanner to read user input Scanner input = new Scanner(System.in); // Ask user to input a number, and grab that number with the Scanner…arrow_forwardGiven the dependency diagram of attributes C1,C2,C3,C4,C5 in a table shown in the following figure, the primary key attributes are underlined Make a database with multiple tables from attributes as shown above that are in 3NF, showing PK, non-key attributes, and FK for each table? Assume the tables are already in 1NF. Hint: 3 tables will result after deducing 1NF -> 2NF -> 3NFarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage
- Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337102087/9781337102087_smallCoverImage.gif)
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133187844/9781133187844_smallCoverImage.gif)
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305080195/9781305080195_smallCoverImage.gif)
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337671385/9781337671385_smallCoverImage.jpg)
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337102100/9781337102100_smallCoverImage.gif)
Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,