Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 92P
A rectangular plate of glass initially has the dimensions 0.200 m by 0.300 m. The coefficient of linear expansion for the glass is 9.00 × 10−6/K. What is the change in the plate’s area if its temperature is increased by 20.0 K?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rectangular plate of glass initially has the dimensions 0.200 m by 0.300 m. The coefficient of linear expansion for the glass is 9.00 * 10-6/K.What is the change in the plate’s area if its temperature is increased by 20.0 K?
An aluminum can is filled to the brim with a liquid.
The can and the liquid are heated so their
temperatures change by the same amount. The can's
initial volume at 8 °C is 9.3 × 10-4 m³. The coefficient
of volume expansion for aluminum is 69 × 10-6 (Cº)-¹.
When the can and the liquid are heated to 86 °C, 8.5
x 10-6 m³ of liquid spills over. What is the coefficient
of volume expansion of the liquid?
B₁
=
An aluminum can is filled to the brim with a liquid. The can and the liquid are heated so their temperatures change by the same amount.
The can's initial volume at 8 °C is 3.5 x 104 m³. The coefficient of volume expansion for aluminum is 69 × 106 (C)-¹. When the can and
the liquid are heated to 77 °C, 8.2 x 106 m³ of liquid spills over. What is the coefficient of volume expansion of the liquid?
BL = 1
Chapter 18 Solutions
Fundamentals of Physics Extended
Ch. 18 - The initial length L, change in temperature T, and...Ch. 18 - Figure 18-24 shows three linear temperature...Ch. 18 - Materials A, B, and C are solids that are at their...Ch. 18 - A sample A of liquid water and a sample B of ice,...Ch. 18 - Question 4 continued: Graphs b through f of Fig....Ch. 18 - Figure 18-26 shows three different arrangements of...Ch. 18 - Figure 18-27 shows two closed cycles on p-V...Ch. 18 - For which cycle in Fig. 18-27, traversed...Ch. 18 - Three different materials of identical mass are...Ch. 18 - A solid cube of edge length r, a solid sphere of...
Ch. 18 - A hot object is dropped into a thermally insulated...Ch. 18 - Suppose the temperature of a gas is 373.15 K when...Ch. 18 - Two constant-volume gas thermometers are...Ch. 18 - A gas thermometer is constructed of two...Ch. 18 - a In 1964, the temperature in the Siberian village...Ch. 18 - At what temperature is the Fahrenheit scale...Ch. 18 - On a linear X temperature scale, water freezes at...Ch. 18 - ILW Suppose that on a linear temperature scale X,...Ch. 18 - At 20C, a brass cube has edge length 30 cm. What...Ch. 18 - ILW A circular hole in an aluminum plate is 2.725...Ch. 18 - An aluminum flagpole is 33 m high. By how much...Ch. 18 - Prob. 11PCh. 18 - An aluminum-alloy rod has a length of 10.000 cm at...Ch. 18 - SSM Find the change in volume of an aluminum...Ch. 18 - When the temperature of a copper coin is raised by...Ch. 18 - ILW A steel rod is 3.000 cm in diameter at 25.00C....Ch. 18 - When the temperature of a metal cylinder is raised...Ch. 18 - SSM WWW An aluminum cup of 100 cm3 capacity is...Ch. 18 - At 20C, a rod is exactly 20.05 cm long on a steel...Ch. 18 - GO A vertical glass tube of length L = 1.280 000 m...Ch. 18 - GO In a certain experiment, a small radioactive...Ch. 18 - SSM ILW As a result of a temperature rise of 32 C,...Ch. 18 - One way to keep the contents of a garage from...Ch. 18 - SSM A small electric immersion healer is used to...Ch. 18 - A certain substance has a mass per mole of 50.0...Ch. 18 - Prob. 25PCh. 18 - What muss of butter, which has a usable energy...Ch. 18 - SSM Calculate the minimum amount of energy, in...Ch. 18 - How much water remains unfrozen after 50.2 kJ is...Ch. 18 - In a solar water heater, energy from the Sun is...Ch. 18 - A 0.400 kg simple is placed in a cooling apparatus...Ch. 18 - ILW What mass of steam at 100C must be mixed with...Ch. 18 - The specific heat of a substance varies with...Ch. 18 - Nonmetric version: a How long does a 2.0 105...Ch. 18 - GO Samples A and B are at different initial...Ch. 18 - An insulated Thermos contains l30 cm3 of hot...Ch. 18 - A 150 g copper bowl contains 220 g of water, both...Ch. 18 - A person makes a quantity of iced tea by mixing...Ch. 18 - A 0.530 kg sample of liquid water and a sample of...Ch. 18 - GO Ethyl alcohol has a boiling point of 78.0C, a...Ch. 18 - GO Calculate the specific heat of a metal from the...Ch. 18 - SSM WWW a Two 50 g ice cubes are dropped into 200...Ch. 18 - GO A 20.0 g copper ring at 0.000C has an inner...Ch. 18 - In Fig. 18-37, a gas sample expands from V0 to...Ch. 18 - GO A thermodynamic system is taken from stale A to...Ch. 18 - SSM ILW A gas within a closed chamber undergoes...Ch. 18 - Suppose 200 J of work is done on a system and 70.0...Ch. 18 - Prob. 47PCh. 18 - GO As a gas is held within a closed chamber, it...Ch. 18 - GO Figure 18-42 represents a closed cycle for a...Ch. 18 - GO A lab sample of gas is taken through cycle abca...Ch. 18 - A sphere of radius 0.500 m, temperature 27.0C, and...Ch. 18 - The ceiling of a single-family dwelling in a cold...Ch. 18 - SSM Consider the slab shown in Fig. 18-18. Suppose...Ch. 18 - If you were to walk briefly in space without a...Ch. 18 - ILW A cylindrical copper rod of length 1.2 m and...Ch. 18 - The giant hornet Vespa mandarinia japonica preys...Ch. 18 - Prob. 57PCh. 18 - A solid cylinder of radius r1 = 2.5 cm, length h1...Ch. 18 - Prob. 59PCh. 18 - GO Figure 18-46 shows the cross section of a wall...Ch. 18 - SSM A 5.0 cm slap has formed on an outdoor tank of...Ch. 18 - Leidenfrost effect. A water drop will last about 1...Ch. 18 - GO Figure 18-49 shows in cross section a wall...Ch. 18 - Prob. 64PCh. 18 - Ice has formed on a shallow pond, and a shady...Ch. 18 - GO Evaporative cooling of beverages. A cold...Ch. 18 - In the extrusion of cold chocolate from a tube,...Ch. 18 - Prob. 68PCh. 18 - Figure 18-51 displays a closed cycle for a gas....Ch. 18 - In a certain solar house, energy from the Sun is...Ch. 18 - A 0.300 kg sample is placed in a cooling apparatus...Ch. 18 - The average rate at which energy is conducted...Ch. 18 - What is the volume increase of an aluminum cube...Ch. 18 - In a series of experiment, block B is to be placed...Ch. 18 - Figure 18-54 displays a dosed cycle for a gas....Ch. 18 - Three equal-length straight rods, of aluminum,...Ch. 18 - SSM The temperature of a 0.700 kg cube of ice is...Ch. 18 - GO Icicles. Liquid water coats an active growing...Ch. 18 - SSM A sample of gas expands from an initial...Ch. 18 - Figure 18-56a shows a cylinder containing gas and...Ch. 18 - SSM A sample of gas undergoes a transition from an...Ch. 18 - Prob. 82PCh. 18 - SSM The temperature of a Pyrex disk is changed...Ch. 18 - a Calculate the rate at which body heat is...Ch. 18 - SSM A 2.50 kg Jump of aluminum is heated to 92.0C...Ch. 18 - A glass window pane is exactly 20 cm by 30 cm at...Ch. 18 - A recruit can join the semi-secret 300 F club at...Ch. 18 - A steel rod at 25.0C is bolted at both ends and...Ch. 18 - An athlete needs to lose weight and decides to do...Ch. 18 - Soon after Earth was formed, heat released by the...Ch. 18 - Prob. 91PCh. 18 - A rectangular plate of glass initially has the...Ch. 18 - Suppose that you intercept 5.0 103 of the energy...Ch. 18 - A thermometer of mass 0.0550 kg and of specific...Ch. 18 - A sample of gas expands from V1 = 1.0 m3 and p1 =...Ch. 18 - Figure 18-59 shows a composite bar of length L =...Ch. 18 - On finding your stove out of order, you decide to...Ch. 18 - The p-V diagram in the Fig. 18-60 shows two paths...Ch. 18 - A cube of edge length 6.0 106 m, emissivity 0.75,...Ch. 18 - A flow calorimeter is a device used to measure the...Ch. 18 - An object of mass 6.00 kg falls through a height...Ch. 18 - The Pyrex glass mirror in a telescope has a...Ch. 18 - The area A of a rectangular plate is ab = 1.4 m2....Ch. 18 - Consider the liquid in a barometer whose...Ch. 18 - A pendulum clock with a pendulum made of brass is...Ch. 18 - Prob. 106PCh. 18 - Prob. 107PCh. 18 - A 1700 kg Buick moving at 83 km/h brakes to a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Fill in the blanks: a. The wrist is also known as the _________ region. b. The arm is also known as the _______...
Human Anatomy & Physiology (2nd Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
What two components contribute to species diversity? Explain how two communities with the same number of specie...
Campbell Biology (11th Edition)
PRACTICE PROBLEM 9.11 Draw the most stable chair conformation of 1-bromo-2-chlorocyclohexane, if the coupling c...
Organic Chemistry
13. An 80 kg spacewalking astronaut pushes off a 640 kg satellite, exerting a 100 N force for the 0.50 s it tak...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sample of a solid substance has a mass m and a density 0 at a temperature T0. (a) Find the density of the substance if its temperature is increased by an amount T in terms of the coefficient of volume expansion b. (b) What is the mass of the sample if the temperature is raised by an amount T?arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forwardAt what temperature is the average speed of carbon dioxide molecules ( M=44.0 g/mol) 510 m/s?arrow_forward
- A rod made of glass has a circular cross section with a diameter of 0.1200 m at a temperature of 20 degrees celsius. An aluminum ring has a diameter of 0.1196 m at a temperature of 20 degrees celsius. The coefficients of thermal expansion for glass and aluminum are 9.0 x 10-6 1/K and 24.0 x 10-6 1/K, respectively. At what temperature will the aluminum ring be able to slip over the glass rod? Between 225 and 250 degrees celsius Between 175 and 200 degrees celsius Between 100 and 125 degrees celsius Higher than 300 degrees celsius Between 250 and 275 degrees celsius Between 125 and 150 degrees celsius Between 275 and 300 degrees celsius Between 150 and 200 degrees celsius O Between 200 and 225 degrees celsiusarrow_forwardA glass device at 0 °C is filled with a liquid at the same temperature. The whole is heated to 40 °C and 0.12 N of the liquid is spilled. If the temperature is then raised to 100 °C, 0.16 N more liquid is spilled. Calculate the cubic expansion coefficient of the liquid (m°C-1). The cubic expansion coefficient of glass is 3x10-5 °C-1.arrow_forwardA copper plate has a length of 0.12 m and a width of 0.10 m at 25 °C. The plate is uniformly heated to 175 °C. If the linear expansion coefficient for copper is 1.7 × 10–5/C°, what is the change in the area of the plate as a result of the increase in temperature?arrow_forward
- A glass flask whose volume is 1000.0 cm3 at 0.0°C is completely filled with mercury at this temperature. When flask and mercury are warmed to 55.0°C, 8.95 cm3 of mercury overflow. If the coefficient of volume expansion of mercury is 18.0 x 105 K-1, compute the coefficient of volume expansion of the glass.arrow_forwardAt 9.3 °C, the length of the glass is 50 cm. After heated, the final length of the glass is 50.9 cm. The coefficient of linear expansion is a = 9 x 10°C. Determine the final temperature of the glass.arrow_forwardAn aluminum can is filled to the brim with a liquid. The can and the liquid are heated so their temperatures change by the same amount. The can’s initial volume at 15 oC is 4.5×10- 4 m3 . The coefficient of volume expansion for aluminum is 69×10-6 oC-1 . When the can and the liquid are heated to 75 oC, 2.9×10-6 m3 of liquid spills over. What is the coefficient of volume expansion of the liquid?arrow_forward
- A weather balloon filled with helium gas has a volume of 300 m³ and pressure 1.4 x 105Pa at the Earth's surface (where the temperature is 293 K). The balloon is then released and moves to a high altitude, where the pressure in the balloon is 8.95 x 10*Pa and the temperature is 250 K (-23°C). What is the new volume of the balloon? A-V= 100 m³, B- V= 163.7 m³ C-V= 184 m³, D- V= 197m3, E-V = 400 m³, A В D O Earrow_forwardA lead rod is heated from 30°C to 50°C. After the temperature is raised, the rod lengthens 0.00013m. what is the initial length of the lead rod? The coefficient of linear expansion for lead is 29x10^-6/°C.arrow_forwardA glass flask whose volume is 1000 cm3 at 0°C is completely filled with mercury at this temperature. When the flask and mercury are warmed to 100°C, 15.5 cm3 of mercury overflow. If the coefficient of volume expansion of mercury is 18 ×10-5 °C·!, determine the coefficient of volume expansion of the glass.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Thermal Expansion and Contraction of Solids, Liquids and Gases; Author: Knowledge Platform;https://www.youtube.com/watch?v=9UtfegG4DU8;License: Standard YouTube License, CC-BY