Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 10Q
A solid cube of edge length r, a solid sphere of radius r, and a solid hemisphere of radius r, all made of the same material, are maintained at temperature 300 K in an environment at temperature 350 K. Rank the objects according to the net rate at which thermal
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solid cube of edge length r, a solid sphere of radius r, and a solid hemisphere of radius r, all made of the same material, are maintained at temperature 300 K in an environment at temperature 350 K. Rank the objects according to the net rate at which thermal radiation is exchanged with the environment, greatest first.
The inner and outer surfaces of a 0.5-cm thick 2-m * 2-m window glass in winter are 10°C and 3°C, respectively. If the thermal conductivity of the glass is 0.78 W/m·K, determine the amount of heat loss through the glass over a period of 5 h. What would your answer be if the glass were 1 cm thick?
Ice of mass 12.8 kg at 0°C is placed in an ice chest. The ice chest has 2.7 cm thick walls of thermal conductivity 0.07 W/m·K and a surface area of 1.29 m2. Express your answers with appropriate mks units.
(a) How much heat must be absorbed by the ice during the melting process?
(b) If the outer surface of the ice chest is at 39° C, how long will it take for the ice to melt?
Chapter 18 Solutions
Fundamentals of Physics Extended
Ch. 18 - The initial length L, change in temperature T, and...Ch. 18 - Figure 18-24 shows three linear temperature...Ch. 18 - Materials A, B, and C are solids that are at their...Ch. 18 - A sample A of liquid water and a sample B of ice,...Ch. 18 - Question 4 continued: Graphs b through f of Fig....Ch. 18 - Figure 18-26 shows three different arrangements of...Ch. 18 - Figure 18-27 shows two closed cycles on p-V...Ch. 18 - For which cycle in Fig. 18-27, traversed...Ch. 18 - Three different materials of identical mass are...Ch. 18 - A solid cube of edge length r, a solid sphere of...
Ch. 18 - A hot object is dropped into a thermally insulated...Ch. 18 - Suppose the temperature of a gas is 373.15 K when...Ch. 18 - Two constant-volume gas thermometers are...Ch. 18 - A gas thermometer is constructed of two...Ch. 18 - a In 1964, the temperature in the Siberian village...Ch. 18 - At what temperature is the Fahrenheit scale...Ch. 18 - On a linear X temperature scale, water freezes at...Ch. 18 - ILW Suppose that on a linear temperature scale X,...Ch. 18 - At 20C, a brass cube has edge length 30 cm. What...Ch. 18 - ILW A circular hole in an aluminum plate is 2.725...Ch. 18 - An aluminum flagpole is 33 m high. By how much...Ch. 18 - Prob. 11PCh. 18 - An aluminum-alloy rod has a length of 10.000 cm at...Ch. 18 - SSM Find the change in volume of an aluminum...Ch. 18 - When the temperature of a copper coin is raised by...Ch. 18 - ILW A steel rod is 3.000 cm in diameter at 25.00C....Ch. 18 - When the temperature of a metal cylinder is raised...Ch. 18 - SSM WWW An aluminum cup of 100 cm3 capacity is...Ch. 18 - At 20C, a rod is exactly 20.05 cm long on a steel...Ch. 18 - GO A vertical glass tube of length L = 1.280 000 m...Ch. 18 - GO In a certain experiment, a small radioactive...Ch. 18 - SSM ILW As a result of a temperature rise of 32 C,...Ch. 18 - One way to keep the contents of a garage from...Ch. 18 - SSM A small electric immersion healer is used to...Ch. 18 - A certain substance has a mass per mole of 50.0...Ch. 18 - Prob. 25PCh. 18 - What muss of butter, which has a usable energy...Ch. 18 - SSM Calculate the minimum amount of energy, in...Ch. 18 - How much water remains unfrozen after 50.2 kJ is...Ch. 18 - In a solar water heater, energy from the Sun is...Ch. 18 - A 0.400 kg simple is placed in a cooling apparatus...Ch. 18 - ILW What mass of steam at 100C must be mixed with...Ch. 18 - The specific heat of a substance varies with...Ch. 18 - Nonmetric version: a How long does a 2.0 105...Ch. 18 - GO Samples A and B are at different initial...Ch. 18 - An insulated Thermos contains l30 cm3 of hot...Ch. 18 - A 150 g copper bowl contains 220 g of water, both...Ch. 18 - A person makes a quantity of iced tea by mixing...Ch. 18 - A 0.530 kg sample of liquid water and a sample of...Ch. 18 - GO Ethyl alcohol has a boiling point of 78.0C, a...Ch. 18 - GO Calculate the specific heat of a metal from the...Ch. 18 - SSM WWW a Two 50 g ice cubes are dropped into 200...Ch. 18 - GO A 20.0 g copper ring at 0.000C has an inner...Ch. 18 - In Fig. 18-37, a gas sample expands from V0 to...Ch. 18 - GO A thermodynamic system is taken from stale A to...Ch. 18 - SSM ILW A gas within a closed chamber undergoes...Ch. 18 - Suppose 200 J of work is done on a system and 70.0...Ch. 18 - Prob. 47PCh. 18 - GO As a gas is held within a closed chamber, it...Ch. 18 - GO Figure 18-42 represents a closed cycle for a...Ch. 18 - GO A lab sample of gas is taken through cycle abca...Ch. 18 - A sphere of radius 0.500 m, temperature 27.0C, and...Ch. 18 - The ceiling of a single-family dwelling in a cold...Ch. 18 - SSM Consider the slab shown in Fig. 18-18. Suppose...Ch. 18 - If you were to walk briefly in space without a...Ch. 18 - ILW A cylindrical copper rod of length 1.2 m and...Ch. 18 - The giant hornet Vespa mandarinia japonica preys...Ch. 18 - Prob. 57PCh. 18 - A solid cylinder of radius r1 = 2.5 cm, length h1...Ch. 18 - Prob. 59PCh. 18 - GO Figure 18-46 shows the cross section of a wall...Ch. 18 - SSM A 5.0 cm slap has formed on an outdoor tank of...Ch. 18 - Leidenfrost effect. A water drop will last about 1...Ch. 18 - GO Figure 18-49 shows in cross section a wall...Ch. 18 - Prob. 64PCh. 18 - Ice has formed on a shallow pond, and a shady...Ch. 18 - GO Evaporative cooling of beverages. A cold...Ch. 18 - In the extrusion of cold chocolate from a tube,...Ch. 18 - Prob. 68PCh. 18 - Figure 18-51 displays a closed cycle for a gas....Ch. 18 - In a certain solar house, energy from the Sun is...Ch. 18 - A 0.300 kg sample is placed in a cooling apparatus...Ch. 18 - The average rate at which energy is conducted...Ch. 18 - What is the volume increase of an aluminum cube...Ch. 18 - In a series of experiment, block B is to be placed...Ch. 18 - Figure 18-54 displays a dosed cycle for a gas....Ch. 18 - Three equal-length straight rods, of aluminum,...Ch. 18 - SSM The temperature of a 0.700 kg cube of ice is...Ch. 18 - GO Icicles. Liquid water coats an active growing...Ch. 18 - SSM A sample of gas expands from an initial...Ch. 18 - Figure 18-56a shows a cylinder containing gas and...Ch. 18 - SSM A sample of gas undergoes a transition from an...Ch. 18 - Prob. 82PCh. 18 - SSM The temperature of a Pyrex disk is changed...Ch. 18 - a Calculate the rate at which body heat is...Ch. 18 - SSM A 2.50 kg Jump of aluminum is heated to 92.0C...Ch. 18 - A glass window pane is exactly 20 cm by 30 cm at...Ch. 18 - A recruit can join the semi-secret 300 F club at...Ch. 18 - A steel rod at 25.0C is bolted at both ends and...Ch. 18 - An athlete needs to lose weight and decides to do...Ch. 18 - Soon after Earth was formed, heat released by the...Ch. 18 - Prob. 91PCh. 18 - A rectangular plate of glass initially has the...Ch. 18 - Suppose that you intercept 5.0 103 of the energy...Ch. 18 - A thermometer of mass 0.0550 kg and of specific...Ch. 18 - A sample of gas expands from V1 = 1.0 m3 and p1 =...Ch. 18 - Figure 18-59 shows a composite bar of length L =...Ch. 18 - On finding your stove out of order, you decide to...Ch. 18 - The p-V diagram in the Fig. 18-60 shows two paths...Ch. 18 - A cube of edge length 6.0 106 m, emissivity 0.75,...Ch. 18 - A flow calorimeter is a device used to measure the...Ch. 18 - An object of mass 6.00 kg falls through a height...Ch. 18 - The Pyrex glass mirror in a telescope has a...Ch. 18 - The area A of a rectangular plate is ab = 1.4 m2....Ch. 18 - Consider the liquid in a barometer whose...Ch. 18 - A pendulum clock with a pendulum made of brass is...Ch. 18 - Prob. 106PCh. 18 - Prob. 107PCh. 18 - A 1700 kg Buick moving at 83 km/h brakes to a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Identify all of the functional groups in Crixivan, an important drug in the treatment of AIDS.
Organic Chemistry
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
WRITE ABOUT A THEME: INTERACTIONS In a short essay (100-150 words), identify the factor or factors in Figure 53...
Campbell Biology (11th Edition)
49. Balance each chemical equation.
a.
b.
c.
d.
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forwardThe height of the Washington Monument is measured to be 170.00 m on a day when the temperature is 35.0 . What will its height be on a day when the temperature falls to -10.0 ? Although the monument is made of limestone, assume that its coefficient of thermal expansion is the same as that of marble. Give your answer to five significant figures.arrow_forwardBeryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forward
- An aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forwardAt 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forward(a) A 1.8 cm thick wooden floor covers a 4.0 m × 5.5 m room. The subfloor is at a temperature of 16.2 ˚C, while the air in the room is at 19.6 ˚C. What is the rate of heat conduction through the floor? The thermal conductivity for wood is 0.2 W / (m K) (b) Seals can cool themselves by using thermal windows, spots on their bodies with a much higher than average surface temperature. Suppose a seal has a thermal window of 0.030m2 at a temperature of 30˚C. If the seal's environment is frosted at -10˚C, what is the net rate of radiation energy loss? Assume an emissivity equal to 0.97. (please show steps, explanation and formulas)arrow_forward
- A wooden sphere of diameter 5 cm is initially at a uniform temperature of 21 °C. Its surfacetemperature is suddenly raised to 83 °C. The thermal conductivity and thermal diffusivity ofthe wood are 0.15 W/m K and 0.82 x 10-7 m2/s, respectively.a) Calculate the temperature 2 cm beneath the surface of the sphere 30 min after thesudden increase in temperature.b) Calculate the energy gained by the sphere during this time.arrow_forwardThe average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 x 104 kW/m - °C, and their average thickness is 20.8 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic meter of gas burned) of 9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 27.3°C if the outside temperature is 0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground. m3 37.0 5.00 m 8.00 m 10.0 marrow_forwardThe average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 x 104 kW/m - °C, and their average thickness is 21.4 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic meter of gas burned) of 9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 24.0°C if the outside temperature is 0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground. 34.68 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m3 137.00 5.00 m 00 8.00 m 10.0 marrow_forward
- A metal rod, 12 cm long and 2.0 cm in diameter, is lagged so that no heat escapes from its sides. A steady heat flow of 36.9 Joules per second is applied at one end and when steady thermal conditions have been established it is found that the temperature of the hot end is 90 OC and the temperature of the other end is 20 OC. Determine the thermal conductivity (in W m-1 K-1) of the metal.arrow_forwardSuppose you want to raise the temperature of a mass m of ice from T0 < 0 °C to T > 100 °C. In this problem, represent the heat of fusion as Lf, the heat of vaporization as Lv, and the temperatures at which the phase changes occur as Tf and Tv. The latent heats are Lf = 334 kJ/kg and Lv = 2256 kJ/kg. The specific heat of ice=ci, the specific heat of water =cw, and the specific heat of steam cs. a) If the heat that must be transferred for this to happen, including the energy needed for phase change is Q =mci ( Tf - T0 ) + m Lf + m cw ( Tv - Tf ) + m Lv + m cs ( T - Tv ). How much heat, in kilocalories, must be transferred for this to happen to 0.175 kg of ice starting at a temperature of -20 °C and ending at a temperature of 130 °C? b) How much time, in seconds, is required to do this, assuming a constant 20.0 kJ/s rate of heat transfer?arrow_forwardTwo identical concrete slabs lie flat and in contact with each other as shown in the figure. If the temperature increases by 100 °F, the lower edges opposite the contact edges remained fixed in position, and the lower edges of the contact side remain in contact, what distance x the slabs rise? The coefficient of thermal expansion of the concrete is 40 × 10-6/K. The initial slab length is 5 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY