A hot object is dropped into a thermally insulated container of water, and the object and water are then allowed to come to thermal equilibrium. The experiment is repeated twice, with different hot objects. All three objects have the same mass and initial temperature, and the mass and initial temperature of the water are the same in the three experiments. For each of the experiments. Fig. 18-29 gives graphs of the temperatures T of the object and the water versus time t. Rank the graphs according to the specific heats of the objects, greatest first.
Figure 18-29 Question 11.
Trending nowThis is a popular solution!
Chapter 18 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
Cosmic Perspective Fundamentals
The Cosmic Perspective (8th Edition)
Introductory Chemistry (6th Edition)
- A solar panel receives energy from the Sun at a rate of 5.0 kW.Thermal energy is transferred from the solar panel to water with an efficiency of 20%.Coldwater of mass 15 kg enters the solar panel every hour.The specific heat capacity of water is 4200 J/(kg °C).Calculate the temperature increase of the water.arrow_forwardAt time t = 0, a vessel contains a mixture of 10 kg of water and an unknown mass of ice in equilibrium at 0°C. The temperature of the mixture is measured over a period of an hour, with the following results: During the first 50 min, the mixture remains at 0°C; from 50 min to 60 min, the temperature increases steadily from 0°C to 2°C. Neglecting the heat capacity of the vessel, determine the mass of ice that was initially placed in it. Assume a constant power input to the container.arrow_forwardA rock of mass 0.432 kg falls from rest from a height of 17.4 m into a pail containing 0.373 kg of water. The rock and water have the same initial temperature. The specific heat capacity of the rock is 1870 J/(kg -C°). Ignore the heat absorbed by the pail itself, and determine the rise in temperature of the rock and water in Celsius degrees. Number Unitsarrow_forward
- A beaker of negligible heat capacity contains 456 g of ice at -25.0°C. A lab technician begins to supply heat to the container at the rate of 1000 J/min. How long after starting will the ice begin to melt, assuming all of the ice has the same temperature? The specific heat of ice is 2090 J/kg ∙ K and the latent heat of fusion of water is 33.5 × 104 J/kg. Express your answer in minutes.arrow_forwardThe giant hornet Vespa mandarinia japonica preys on Japanese bees. However, if one of the hornets attempts to invade a beehive, several hundred of the bees quickly form a compact ball around the hornet to stop it. They don’t sting, bite, crush, or suffocate it. Rather they overheat it by quickly raising their body temperatures from the normal 35 C to 47 C or 48 C, which is lethal to the hornet but not to the bees . Assume the following: 500 bees form a ball of radius R=2.0 cm for a time t= 20 min, the primary loss of energy by the ball is by thermal radiation, the ball’s surface has emissivity ´=0.80, and the ball has a uniform temperature. On average, how much additional energy must each bee produce during the 20 min to maintain 47 C?arrow_forwardThe rectangular plate has a length of l and width of w. If the temperature increases by ΔT, find the increase of the area of the plate, given that the coefficient of the linear expansion of the plate material is α.arrow_forward
- Ice at 00C is placed in a Styrofoam cup containing 0.32 kg of lemonade at 270C . The specific heat capacity of the lemonade is virtually the same as that of water, c = 4186 J/kg 0C. After the ice and lemonade reached the equilibrium temperature, some ice still remains. The latent heat of fusion for water is Lf = 3.35 x105 J/kg. Assume that the mass of the cup is so small that it absorbs a negligible amount of heat, and ignore any heat lost to the surroundings. Determine the mass of ice that has melted.arrow_forwardA chunk of ice at − 20 degrees Cis added to a thermally insulated container of very cold water at0 degrees C. What happens in the container?(A) Nothing happens.(B) The ice melts until thermal equilibrium is established.(C) The water cools down until thermal equilibrium is established.(D) Some of the water freezes and the chunk of ice gets larger.arrow_forwardSamples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure (a) gives their temperatures T versus time t. Sample A has a mass of 4.79 kg; sample B has a mass of 1.50 kg. Figure (b) is a general plot for the material of sample B. It shows the temperature change AT that the material undergoes when energy is transferred to it as heat Q. The change AT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by AT, = 4.50 °C. What is the specific heat of sample A? Number i T (°C) 100 60 20 0 A Units 10 t (min) (a) 20 AT (Cº) AT, 0 8 Q/m (kJ/kg) (b) 16arrow_forward
- Samples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure (a) gives their temperatures T versus time t. Sample A has a mass of 4.96 kg; sample B has a mass of 1.35 kg. Figure (b) is a general plot for the material of sample B. It shows the temperature change AT that the material undergoes when energy is transferred to it as heat Q. The change AT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by AT, = 4.80 °C. What is the specific heat of sample A? 100 AT, 60 20 10 20 8. 16 t (min) Q/m (kJ/kg) (a) (b)arrow_forwardThermography is a technique for measuring radiant heat and detecting variations in surface temperatures that may be medically, environmentally, or militarily meaningful.(a) What is the percent increase in the rate of heat transfer by radiation from a given area at a temperature of 34.0C compared with that at 33.0C, such as on a person’s skin? (b) What is the percent increase in the rate of heat transfer by radiation from a given area at a temperature of 34.0C compared with that at 20.0C, such as for warm and cool automobile hoods?arrow_forwardSamples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure (a) gives their temperatures T versus time t. Sample A has a mass of 5.37 kg; sample B has a mass of 1.64 kg. Figure (b) is a general plot for the material of sample B. It shows the temperature change AT that the material undergoes when energy is transferred to it as heat Q. The change AT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by AT, = 4.10 °C. What is the specific heat of sample A? 100 AT A 60 20 10 20 8. 16 t (min) Q/m (kJ/kg) (a) (b) Number i Units T (°C) AT (C°)arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning