Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 24P
A certain substance has a mass per mole of 50.0 g/mol. When 314 J is added as heat to a 30.0 g sample’s temperature rises from 25.0°C to 45.0°C. What are the (a) specific heat and (b) molar specific heat of this substance? (c) How many moles are in the sample?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A certain substance has a mass per mole of 50.0 g/mol.When 314 J is added as heat to a 30.0 g sample, the sample’s temperature rises from 25.0 C to 45.0 C. What are the (a) specific heat and (b) molar specific heat of this substance? (c) How many moles are in the sample?
A certain substance has a mass per mole of 41 g/mol. When 315 J is added as heat to a 33.0 g sample, the sample's temperature rises from 27.0°C to
41.0°C. What are the (a) specific heat and (b) molar specific heat of this substance? (c) How many moles are present?
(a) Number
Units
(b) Number
Units
(c) Number
Units
One mole of water vapor at 346 K cools
to 280 K. The heat given off by the cooling
water vapor is absorbed by 10 mol of an ideal
gas, and this heat absorption causes the gas to
expand at a constant temperature of 273 K.
If the final volume of the ideal gas is 24 L,
determine its initial volume. The specific heat
of water is 4186 J/kg °C and the latent heat
of vaporization is 2.26 x 106 J/kg.
Answer in units of 1.
Chapter 18 Solutions
Fundamentals of Physics Extended
Ch. 18 - The initial length L, change in temperature T, and...Ch. 18 - Figure 18-24 shows three linear temperature...Ch. 18 - Materials A, B, and C are solids that are at their...Ch. 18 - A sample A of liquid water and a sample B of ice,...Ch. 18 - Question 4 continued: Graphs b through f of Fig....Ch. 18 - Figure 18-26 shows three different arrangements of...Ch. 18 - Figure 18-27 shows two closed cycles on p-V...Ch. 18 - For which cycle in Fig. 18-27, traversed...Ch. 18 - Three different materials of identical mass are...Ch. 18 - A solid cube of edge length r, a solid sphere of...
Ch. 18 - A hot object is dropped into a thermally insulated...Ch. 18 - Suppose the temperature of a gas is 373.15 K when...Ch. 18 - Two constant-volume gas thermometers are...Ch. 18 - A gas thermometer is constructed of two...Ch. 18 - a In 1964, the temperature in the Siberian village...Ch. 18 - At what temperature is the Fahrenheit scale...Ch. 18 - On a linear X temperature scale, water freezes at...Ch. 18 - ILW Suppose that on a linear temperature scale X,...Ch. 18 - At 20C, a brass cube has edge length 30 cm. What...Ch. 18 - ILW A circular hole in an aluminum plate is 2.725...Ch. 18 - An aluminum flagpole is 33 m high. By how much...Ch. 18 - Prob. 11PCh. 18 - An aluminum-alloy rod has a length of 10.000 cm at...Ch. 18 - SSM Find the change in volume of an aluminum...Ch. 18 - When the temperature of a copper coin is raised by...Ch. 18 - ILW A steel rod is 3.000 cm in diameter at 25.00C....Ch. 18 - When the temperature of a metal cylinder is raised...Ch. 18 - SSM WWW An aluminum cup of 100 cm3 capacity is...Ch. 18 - At 20C, a rod is exactly 20.05 cm long on a steel...Ch. 18 - GO A vertical glass tube of length L = 1.280 000 m...Ch. 18 - GO In a certain experiment, a small radioactive...Ch. 18 - SSM ILW As a result of a temperature rise of 32 C,...Ch. 18 - One way to keep the contents of a garage from...Ch. 18 - SSM A small electric immersion healer is used to...Ch. 18 - A certain substance has a mass per mole of 50.0...Ch. 18 - Prob. 25PCh. 18 - What muss of butter, which has a usable energy...Ch. 18 - SSM Calculate the minimum amount of energy, in...Ch. 18 - How much water remains unfrozen after 50.2 kJ is...Ch. 18 - In a solar water heater, energy from the Sun is...Ch. 18 - A 0.400 kg simple is placed in a cooling apparatus...Ch. 18 - ILW What mass of steam at 100C must be mixed with...Ch. 18 - The specific heat of a substance varies with...Ch. 18 - Nonmetric version: a How long does a 2.0 105...Ch. 18 - GO Samples A and B are at different initial...Ch. 18 - An insulated Thermos contains l30 cm3 of hot...Ch. 18 - A 150 g copper bowl contains 220 g of water, both...Ch. 18 - A person makes a quantity of iced tea by mixing...Ch. 18 - A 0.530 kg sample of liquid water and a sample of...Ch. 18 - GO Ethyl alcohol has a boiling point of 78.0C, a...Ch. 18 - GO Calculate the specific heat of a metal from the...Ch. 18 - SSM WWW a Two 50 g ice cubes are dropped into 200...Ch. 18 - GO A 20.0 g copper ring at 0.000C has an inner...Ch. 18 - In Fig. 18-37, a gas sample expands from V0 to...Ch. 18 - GO A thermodynamic system is taken from stale A to...Ch. 18 - SSM ILW A gas within a closed chamber undergoes...Ch. 18 - Suppose 200 J of work is done on a system and 70.0...Ch. 18 - Prob. 47PCh. 18 - GO As a gas is held within a closed chamber, it...Ch. 18 - GO Figure 18-42 represents a closed cycle for a...Ch. 18 - GO A lab sample of gas is taken through cycle abca...Ch. 18 - A sphere of radius 0.500 m, temperature 27.0C, and...Ch. 18 - The ceiling of a single-family dwelling in a cold...Ch. 18 - SSM Consider the slab shown in Fig. 18-18. Suppose...Ch. 18 - If you were to walk briefly in space without a...Ch. 18 - ILW A cylindrical copper rod of length 1.2 m and...Ch. 18 - The giant hornet Vespa mandarinia japonica preys...Ch. 18 - Prob. 57PCh. 18 - A solid cylinder of radius r1 = 2.5 cm, length h1...Ch. 18 - Prob. 59PCh. 18 - GO Figure 18-46 shows the cross section of a wall...Ch. 18 - SSM A 5.0 cm slap has formed on an outdoor tank of...Ch. 18 - Leidenfrost effect. A water drop will last about 1...Ch. 18 - GO Figure 18-49 shows in cross section a wall...Ch. 18 - Prob. 64PCh. 18 - Ice has formed on a shallow pond, and a shady...Ch. 18 - GO Evaporative cooling of beverages. A cold...Ch. 18 - In the extrusion of cold chocolate from a tube,...Ch. 18 - Prob. 68PCh. 18 - Figure 18-51 displays a closed cycle for a gas....Ch. 18 - In a certain solar house, energy from the Sun is...Ch. 18 - A 0.300 kg sample is placed in a cooling apparatus...Ch. 18 - The average rate at which energy is conducted...Ch. 18 - What is the volume increase of an aluminum cube...Ch. 18 - In a series of experiment, block B is to be placed...Ch. 18 - Figure 18-54 displays a dosed cycle for a gas....Ch. 18 - Three equal-length straight rods, of aluminum,...Ch. 18 - SSM The temperature of a 0.700 kg cube of ice is...Ch. 18 - GO Icicles. Liquid water coats an active growing...Ch. 18 - SSM A sample of gas expands from an initial...Ch. 18 - Figure 18-56a shows a cylinder containing gas and...Ch. 18 - SSM A sample of gas undergoes a transition from an...Ch. 18 - Prob. 82PCh. 18 - SSM The temperature of a Pyrex disk is changed...Ch. 18 - a Calculate the rate at which body heat is...Ch. 18 - SSM A 2.50 kg Jump of aluminum is heated to 92.0C...Ch. 18 - A glass window pane is exactly 20 cm by 30 cm at...Ch. 18 - A recruit can join the semi-secret 300 F club at...Ch. 18 - A steel rod at 25.0C is bolted at both ends and...Ch. 18 - An athlete needs to lose weight and decides to do...Ch. 18 - Soon after Earth was formed, heat released by the...Ch. 18 - Prob. 91PCh. 18 - A rectangular plate of glass initially has the...Ch. 18 - Suppose that you intercept 5.0 103 of the energy...Ch. 18 - A thermometer of mass 0.0550 kg and of specific...Ch. 18 - A sample of gas expands from V1 = 1.0 m3 and p1 =...Ch. 18 - Figure 18-59 shows a composite bar of length L =...Ch. 18 - On finding your stove out of order, you decide to...Ch. 18 - The p-V diagram in the Fig. 18-60 shows two paths...Ch. 18 - A cube of edge length 6.0 106 m, emissivity 0.75,...Ch. 18 - A flow calorimeter is a device used to measure the...Ch. 18 - An object of mass 6.00 kg falls through a height...Ch. 18 - The Pyrex glass mirror in a telescope has a...Ch. 18 - The area A of a rectangular plate is ab = 1.4 m2....Ch. 18 - Consider the liquid in a barometer whose...Ch. 18 - A pendulum clock with a pendulum made of brass is...Ch. 18 - Prob. 106PCh. 18 - Prob. 107PCh. 18 - A 1700 kg Buick moving at 83 km/h brakes to a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
14.19 In Genetic Analysis, we designed a screen to identify conditional mutants of S. cerevisiae in which the s...
Genetic Analysis: An Integrated Approach (3rd Edition)
Community 1 contains 100 individuals distributed among four species: 5A, 5B, 85C, and 5D Community 2 contains 1...
Campbell Biology in Focus (2nd Edition)
In the light reactions, what is the initial electron donor? Where do the electrons finally end up?
Campbell Biology (11th Edition)
Could an organism be a fermenter and also be both MR and V—P negative? Explain.
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
53. A Doppler blood flow unit emits ultrasound at 5.0 MHz. What is the frequency shift of the ultrasound reflec...
College Physics: A Strategic Approach (3rd Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forwardOne way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forward2.4 g of water was evaporated from the surface of skin. How much heat, in the unit of kJ, was transferred from the body to the water to evaporate the water completely? The temperature of the skin is 33.5°C, and the latent heat of vaporization of water at 33.5°C is 43.6 kJ/mol. Molar mass of water is 18 g/molarrow_forward
- While swimming, conduction can play a big role in heat loss from the body. The body of one swimmer has a total surface area of 1.80 m2 and an average thickness of 1.60 mm. The skin's thermal conductivity is 0.370 W/m-K. If the water's temperature is 20.0°C, and the blood reaching the inner surface of the skin is at 37.0°C, what is the rate of energy loss for that person through conduction?arrow_forwardA wooden ice box has a total area of 1.50 m2 amd walls with an average thickness of 2.0 cm. The box contains ice at 0.0 oC. The inside of the box is kept cold by melting ice. How much ice melts in one day if the ice box is kept in the shade of tree at 29 oC. (Assume the thermal conductivity of wood is 0.16 kJ/s m oC)arrow_forwardA closed box is filled with dry ice at a temperature of -80.9 oC, while the outside temperature is 28.4 oC. The box is cubical, measuring 0.379 m on a side, and the thickness of the walls is 4.41 × 10-2 m. In one day, 3.66 × 106 J of heat is conducted through the six walls. Find the thermal conductivity of the material from which the box is made.arrow_forward
- If the heat is assumed to be generated 0.03 m below the skin, the temperature difference between the skin and the interior of the body would exist if the heat were conducted to the surface is 28 k°. What is the heat rate if the surface area of the body is 1.5m? and the coefficient of the thermal conductivity= 0.2watt/m.k°. 290 watt 310 watt 280 watt 260 wattarrow_forwardA 50.0-g sample of a material at 80.0°C is dropped into a calorimeter containing 100.0 g of water at 20.0°C. When the mixture reaches thermal equilibrium, it is at a temperature 24.0°C. If heat transfer to the walls of the calorimeter is negligible, what is the specific heat of the material? A 0.143 cal/(g-C°) B 0.322 cal/(g-c°) (c) 0.221 cal/(g-C°) 0.437 cal/(g-C°)arrow_forwardA solid concrete wall has dimensions 4.0 m × 2.4 m and is 30 cm thick. The thermal conductivity of the concrete is 1.3 W/m ∙ K, and it separates a basement from the ground outside. The inner surface of the wall is at 18°C, and the outside surface is at 6°C. How much heat flows through the wall every hour?arrow_forward
- 500 g of Ice at 0 °C is kept in an insulated cubic box. The length of the box is 30 cm and the thickness of the wall is 0.5 cm. The thermal conductivity of the wall is 0.04 W/mK. If the environment temperature outside the box is 25 °C, Determine (a) the rate of heat loss due to the heat conduction.arrow_forwardThe air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.arrow_forwardJill takes in 0.0140 mol of air in a single breath. The air is taken in at 20.0°C and exhaled at 35.0°C. Her respiration rate is (2.00x10^1) breaths per minute. At what average rate does heat leave her body due to the temperature increase of the air? Provide your answer to three significant figures. HINT: Use the molar specific heat at constant volume to find the heat loss, where Cv = 5R/2 (for an ideal diatomic gas).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY