![Chemistry & Chemical Reactivity](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_largeCoverImage.gif)
Determine whether the reactions listed below are entropy-favored or disfavored under standard conditions. Predict how an increase in temperature will affect the value of ΔrG°.
- (a) I2(g) → 2 I(g)
- (b) 2 SO2(g) + O2(g) → 2 SO3(g)
- (c) SiCl4(g) + 2 H2O(ℓ) → SiO2(s) + 4 HCl(g)
- (d) P4(s, white) + 6 H2(g) → 4 PH3(g)
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favored if the value of entropy change for reaction is positive.
Answer to Problem 24PS
The formation of
Explanation of Solution
The value of
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
Substituting the respective values
Also,
Substituting the respective values
Now,
Substitute the value of
The formation of
The reaction will become product-favored at higher temperature.
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favoured if the value of entropy change for reaction is positive.
Answer to Problem 24PS
The formation of
Explanation of Solution
The value of
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
The standard enthalpy change is expressed as,
Substituting the respective values
Also,
Substituting the respective values
Now,
Substitute the value of
The formation of
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favoured if the value of entropy change for reaction is positive.
Answer to Problem 24PS
The reaction of
Explanation of Solution
The Appendix L referred for values for the values of standard entropies and enthalpies.
The standard enthalpy change is expressed as,
Substituting the respective values
Also,
Substituting the respective values
Now,
Substitute the value of
The reaction of
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favoured if the value of entropy change for reaction is positive.
Answer to Problem 24PS
The reaction of
Explanation of Solution
The value of
Given:
The Appendix L referred for values of standard entropies and enthalpies.
The standard enthalpy change is expressed as,
Substituting the respective values
Also,
Substituting the respective values
Now,
Substitute the value of
The reaction of
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry & Chemical Reactivity
- Label the spectrum with spectroscopyarrow_forwardQ1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and B? How about the diastereomers (A versus C or B versus C)? enantiomers H Br H Br (S) CH3 H3C (S) (R) CH3 H3C H Br A Br H C H Br H3C (R) B (R)CH3 H Br H Br H3C (R) (S) CH3 Br H D identicalarrow_forwardLabel the spectrumarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)