Using values of ΔfH° and S°, calculate the standard molar free energy of formation, ΔfG°, for each of the following:
- (a) Ca(OH)2(s)
- (b) Cl(g)
- (c) Na2CO3(s)
Compare your calculated values of ΔfG° with those listed in Appendix L. Which of these formation reactions are predicted to be product-favored at equilibrium at 25 °C?
(a)
Interpretation:
The the standard molar free energy for formation of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The sign of
Answer to Problem 18PS
The standard molar energy of formation for
Explanation of Solution
The standard molar energy of formation for
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
The enthalpy change is expressed as,
Substituting the values,
The entropy change is expressed as,
Substituting the values,
Now,
Substitute the value of
The value in Appendix L is
The value of free energy change is negative. Thus, the reaction is product-favored at equilibrium.
(b)
Interpretation:
The the standard molar free energy for formation of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The sign of
Answer to Problem 18PS
The standard molar energy of formation for
Explanation of Solution
The standard molar energy of formation for
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
The enthalpy change is expressed as,
Substituting the respective values,
The entropy change is expressed as,
Substituting the respective values,
Now,
Substitute the value of
The value in Appendix L is
The value of free energy change is positive. Thus, the reaction is reactant-favored at equilibrium.
(c)
Interpretation:
The the standard molar free energy for formation of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
The sign of
Answer to Problem 18PS
The standard molar energy of formation for
Explanation of Solution
The standard molar energy of formation for
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
The enthalpy change is expressed as,
Substituting the values,
The entropy change is expressed as,
Substituting the values,
Now,
Substituting the value of
The value in Appendix L is
The value of free energy change is negative. Thus, the reaction is product-favored at equilibrium.
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry & Chemical Reactivity
- Follow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forwardDraw all reasonable resonance structures for the following cation. Then draw the resonance hybrid. Provide steps and explanationarrow_forwardHow are the molecules or ions in each pair related? Classify them as resonance structures, isomers, or neither.arrow_forward
- How do I solve this Alkyne synthesis homework problem for my Organic Chemistry II class? I have to provide both the intermediate products and the reagents used.arrow_forwardSubstance X is known to exist at 1 atm in the solid, liquid, or vapor phase, depending on the temperature. Additionally, the values of these other properties of X have been determined: melting point enthalpy of fusion 90. °C 8.00 kJ/mol boiling point 130. °C enthalpy of vaporization 44.00 kJ/mol density 2.80 g/cm³ (solid) 36. J.K mol (solid) 2.50 g/mL (liquid) heat capacity 32. J.Kmol (liquid) 48. J.Kmol (vapor) You may also assume X behaves as an ideal gas in the vapor phase. Ex Suppose a small sample of X at 50 °C is put into an evacuated flask and heated at a constant rate until 15.0 kJ/mol of heat has been added to the sample. Graph the temperature of the sample that would be observed during this experiment. o0o 150- 140 130- 120- 110- 100- G Ar ?arrow_forwardMechanism. Provide the mechanism for the reaction below. You must include all arrows, intermediates, and formal charges. If drawing a Sigma complex, draw all major resonance forms. The ChemDraw template of this document is available on Carmen. Br FeBr3 Brarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax