Determine whether the reactions listed below are entropy-favored or disfavored under standard conditions. Predict how an increase in temperature will affect the value of ΔrG°.
- (a) N2(g) + 2 O2(g) → 2 NO2(g)
- (b) 2 C(s) + O2(g) → 2 CO(g)
- (c) CaO(s) + CO2(g) → CaCO3(s)
- (d) 2 NaCl(s) → 2 Na(s) + Cl2(g)
(a)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favored if the value of entropy change for reaction is positive.
Answer to Problem 23PS
The formation of
Explanation of Solution
The value of
Given:
The Appendix L referred for the values of standard entropies and enthalpies.
Substituting the respective values
Substituting the respective values
Now,
Substitute the value of
The formation of
The Table 18.1 was referred,
Both the enthalpy and entropy change are unfavorable. There is no temperature at which the reaction will become product-favored at equilibrium. It is a Type
(b)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favoured if the value of entropy change for reaction is positive.
Answer to Problem 23PS
The formation of
Explanation of Solution
The value of
Given:
The Appendix L referred for values for standard entropies and enthalpies.
Substituting the values,
Substituting the values,
Now,
Substitute the value of
The formation of
The Table 18.1 was referred,
Both the enthalpy and entropy change are favorable. As temperature increases the reaction will become more product-favored at equilibrium. It is a Type
(c)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favoured if the value of entropy change for reaction is positive.
Answer to Problem 23PS
The formation of
Explanation of Solution
The value of
Given:
The Appendix L referred for values of standard entropies and enthalpies.
Substituting the respective values
Substituting the respective values
Now,
Substitute the value of
The formation of
(d)
Interpretation:
It should be determined that whether the given reaction is entropy favorable and should be identified that how increase in temperature will affect the value of
Concept introduction:
The Gibbs free energy or the free energy change is a thermodynamic quantity represented by
Here,
Entropy for any reaction is expressed as,
A reaction is said to be entropy-favoured if the value of entropy change for reaction is positive.
Answer to Problem 23PS
The decomposition of
Explanation of Solution
The value of
Given:
The Appendix L referred for values of standard entropies and enthalpies.
Substituting the respective values
Substituting the respective values
Now,
Substitute the value of
The decomposition of
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry & Chemical Reactivity
- There are millions of organic compounds known, and new ones are being discovered or made at a rate of morethan 100,000 compounds per year. Organic compoundsburn readily in air at high temperatures to form carbondioxide and water. Several classes of organic compoundsare listed, with a simple example of each. Write a balanced chemical equation for the combustion in O2ofeach of these compounds, and then use the data inAppendix J to show that each reaction is product-favoredat room temperature. From these results, it is reasonable to hypothesize thatallorganic compounds are thermodynamically unstable inan oxygen atmosphere (that is, their room-temperaturereaction with O2(g) to form CO2(g) and H2O() isproduct-favored). If this hypothesis is true, how canorganic compounds exist on Earth?arrow_forwardFor each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forwardFor each process, predict whether entropy increases or decreases, and explain how you arrived at your prediction. 2 CO2(g) → 2 CO(g) + O2(g) NaCl(s) → NaCl(aq) MgCO3(s) → MgO(s) + CO2(g)arrow_forward
- Use the data in Appendix G to calculate the standard entropy change for H2(g) + CuO(s) H2O() + Cu(s)arrow_forwardYeast can produce ethanol by the fermentation of glucose (C6H12O6), which is the basis for the production of most alcoholic beverages. C6H12O6(aq) 2 C2H5OH() + 2 CO2(g) Calculate rH, rS, and rG for the reaction at 25 C. Is the reaction product- or reactant-favored at equilibrium? In addition to the thermodynamic values in Appendix L, you will need the following data for C6H12O6(aq): fH = 1260.0 kl/mol; S = 289 J/K mol; and fG = 918.8 kl/mol.arrow_forwardThe molecular scale pictures below show snapshots of a strong acid at three different instants after it is added to water. Place the three pictures in the correct order so that they show the progress of the spontaneous process that takes place as the acid dissolves in the water. Explain your answer in terms of entropyarrow_forward
- What is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the synthesis of ammonia? 3H2(g) + N2(g) 2NH3(g)arrow_forwardCalculate the standard Gibbs free-energy change when SO3 forms from SO2 and O2 at 298 K. Why is sulfur trioxide an important substance to study? (Hint: What happens when it combines with water?)arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the explosive decomposition of TNT? Use your knowledge of TNT and the chemical equation, particularly the phases, to answer this question. (Thermodynamic data for TNT are not in Appendix G.) 2C7H5N3O6(s) 3N2(g) + 5H2O() + 7C(s) + 7CO(g)arrow_forward
- Using values of fH and S, calculate rG for each of the following reactions at 25 C. (a) 2 Na(s) + 2 H2O() 2 NaOH(aq) + H2(g) (b) 6 C(graphite) + 3 H2(g) C6H6() Which of these reactions is (are) predicted to be product-favored at equilibrium? Are the reactions enthalpy- or entropy-driven?arrow_forwardSolid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forwardFor each process, tell whether the entropy change of the system is positive or negative. (a) A glassblower heats glass (the system) to its softening temperature. (b) A teaspoon of sugar dissolves in a cup of coffee. (The system consists of both sugar and coffee.) (c) Calcium carbonate precipitates out of water in a cave to form stalactites and stalagmites. (Consider only the calcium carbonate to be the system.)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax