The value of ΔS o ( universe ) , ΔS o ( system ) and ΔS o ( surroundings ) for formation of methanol should be determined. Concept introduction: The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings. ΔS o ( universe ) = ΔS o ( system ) +ΔS o ( surroundings ) The ΔS o ( universe ) should be greater than zero for a spontaneous process. The ΔS o ( system ) can be calculated by the following expression, ΔS o ( system ) =Δ r S ° = ∑ nS ° ( products ) - ∑ nS ° ( reactants ) The ΔS o ( surroundings ) can be calculated by the following expression, ΔS o ( surroundings ) = -Δ r H o T Here, Δ r H o is the enthalpy change for the reaction.
The value of ΔS o ( universe ) , ΔS o ( system ) and ΔS o ( surroundings ) for formation of methanol should be determined. Concept introduction: The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings. ΔS o ( universe ) = ΔS o ( system ) +ΔS o ( surroundings ) The ΔS o ( universe ) should be greater than zero for a spontaneous process. The ΔS o ( system ) can be calculated by the following expression, ΔS o ( system ) =Δ r S ° = ∑ nS ° ( products ) - ∑ nS ° ( reactants ) The ΔS o ( surroundings ) can be calculated by the following expression, ΔS o ( surroundings ) = -Δ r H o T Here, Δ r H o is the enthalpy change for the reaction.
Solution Summary: The author explains the entropy change for the universe, which is the sum of the system and surroundings.
The value of ΔSo(universe), ΔSo(system) and ΔSo(surroundings) for formation of methanol should be determined.
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
ΔSo(universe)= ΔSo(system)+ΔSo(surroundings)
The ΔSo(universe) should be greater than zero for a spontaneous process.
The ΔSo(system) can be calculated by the following expression,
ΔSo(system)=ΔrS°= ∑nS°(products)-∑nS°(reactants)
The ΔSo(surroundings) can be calculated by the following expression,
ΔSo(surroundings)=-ΔrHoT
Here, ΔrHo is the enthalpy change for the reaction.
(b)
Interpretation Introduction
Interpretation:
It should be identified that the given reaction is product favoured at equilibrium or not at 25oC.
Concept introduction:
The universe consists of two parts, systems and surroundings. The entropy change for the universe is the sum of entropy change for the system and for surroundings.
ΔSo(universe)= ΔSo(system)+ΔSo(surroundings)
The ΔSo(universe) should be greater than zero for a spontaneous process.
The ΔSo(system) can be calculated by the following expression,
ΔSo(system)=ΔrS°= ∑nS°(products)-∑nS°(reactants)
The ΔSo(surroundings) can be calculated by the following expression,
ΔSo(surroundings)=-ΔrHoT
Here, ΔrHo is the enthalpy change for the reaction.
Select an amino acid that has and N-H or O-H bond in its R-group (you have 8 to choose from!). Draw at least two water molecules interacting with the R-group of the amino acid.
Is this aromatic?
CHEM2323
E
Tt
PS CH03
Draw and name all monobromo derivatives of pentane, C5H11Br.
Problem 3-33
Name:
Draw structures for the following:
(a) 2-Methylheptane
(d) 2,4,4-Trimethylheptane
Problem 3-35
(b) 4-Ethyl-2,2-dimethylhexane
(e) 3,3-Diethyl-2,5-dimethylnonane
(c) 4-Ethyl-3,4-dimethyloctane
2
(f) 4-Isopropyl-3-methylheptane
KNIE>
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY