Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 26PS
Calculate ΔrH° and ΔrS° for the reaction of tin(IV) oxide with carbon.
SnO2(s) + C(s) → Sn(s) + CO2(g)
- (a) Is the reaction product-favored at equilibrium at 298 K?
- (b) Is the reaction predicted to be product-favored at equilibrium at higher temperatures?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For a reaction with ΔHo = 40 kJ/mol, decide which of the following statements is (are) true. Correct any false statement to make it true.
(a) The reaction is exothermic;
(b) ΔGo for the reaction is positive;
(c) Keq is greater than 1;
(d) the bonds in the starting materials are stronger than the bonds in the product; and
(e) the product is favored at equilibrium.
Boron, atomic number 5, occurs naturally as two isotopes, 10B and 11B, with natural abundances of 19.9% and 80.1%, respectively.
(a) Elemental boron reacts with fluorine to form BF3, a gas. Write a balanced chemical equation for the reaction of solid boron with fluorine gas.
(b) ΔHf° for BF3(g) is -1135.6 kj/mol. Calculate the standard enthalpy change in the reaction of boron with fluorine.
(c) Will the mass percentage of F be the same in 10BF3 and 11BF3? If not, why is that the case?
The thermite reaction is highly exothermic as illustrated as follows:
Fe2O3 (s) + 2 Al (s) --> 2 Fe (s) + Al2O (s) + 850 kJ
What mass of aluminum would be required to produce 375 kJ of energy?
Chapter 18 Solutions
Chemistry & Chemical Reactivity
Ch. 18.1 - 1. A process is spontaneous in the direction that...Ch. 18.1 - A process that is reactant-favored at equilibrium...Ch. 18.1 - Prob. 3RCCh. 18.2 - In a spontaneous process, S(universe) is (a) 0 (b)...Ch. 18.2 - 2. Which of the following is true for a...Ch. 18.2 - Prob. 3RCCh. 18.3 - Prob. 1RCCh. 18.3 - Prob. 2RCCh. 18.4 - Predict which substance in each pair has the...Ch. 18.4 - Prob. 2CYU
Ch. 18.4 - Without looking up their standard entropies in...Ch. 18.4 - Without doing any calculations, predict the sign...Ch. 18.4 - Calculate rS for the following reaction at 25 C....Ch. 18.5 - Based on rH and rS, predict the spontaneity of the...Ch. 18.5 - Prob. 1RCCh. 18.5 - Prob. 2RCCh. 18.5 - Prob. 3RCCh. 18.6 - Prob. 1RCCh. 18.6 - Prob. 2RCCh. 18.7 - Prob. 1CYUCh. 18.7 - Prob. 2CYUCh. 18.7 - Oxygen was first prepared by Joseph Priestley...Ch. 18.7 - Prob. 4CYUCh. 18.7 - Prob. 5CYUCh. 18.7 - Prob. 6CYUCh. 18.7 - Prob. 1RCCh. 18.7 - Prob. 2RCCh. 18.7 - Prob. 3RCCh. 18.7 - Consider the hydrolysis reactions of creatine...Ch. 18.7 - Prob. 2QCh. 18.A - The decomposition of diamond to graphite...Ch. 18.A - It has been demonstrated that buckminsterfullerene...Ch. 18 - Which substance has the higher entropy? (a) dry...Ch. 18 - Which substance has the higher entropy? (a) a...Ch. 18 - Use S values to calculate the standard entropy...Ch. 18 - Use S values to calculate the standard entropy...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Calculate the standard entropy change for the...Ch. 18 - Is the reaction Si(s) + 2 Cl2(g) SiCl4(g)...Ch. 18 - Is the reaction Si(s) + 2 H2(g) SiH4(g)...Ch. 18 - Calculate S(universe) for the decomposition of 1...Ch. 18 - Calculate S(universe) for the formation of 1 mol...Ch. 18 - Classify each of the reactions according to one of...Ch. 18 - Classify each of the reactions according to one of...Ch. 18 - Using values of fH and S, calculate rG for each of...Ch. 18 - Using values of fH and S, calculate rG for each of...Ch. 18 - Using values of fH and S, calculate the standard...Ch. 18 - Using values of fH and S, calculate the standard...Ch. 18 - Using values of fG, calculate rG for each of the...Ch. 18 - Using values of fG, calculate rG for each of the...Ch. 18 - For the reaction BaCO3(s) BaO(s) + CO2(g), rG =...Ch. 18 - For the reaction TiCl2(s) + Cl2(g) TiCl4(), rG =...Ch. 18 - Determine whether the reactions listed below are...Ch. 18 - Determine whether the reactions listed below are...Ch. 18 - Heating some metal carbonates, among them...Ch. 18 - Calculate rH and rS for the reaction of tin(IV)...Ch. 18 - The standard free energy change, rG, for the...Ch. 18 - Prob. 28PSCh. 18 - Calculate rG at 25 C for the formation of 1.00 mol...Ch. 18 - Prob. 30PSCh. 18 - Prob. 31PSCh. 18 - Prob. 32PSCh. 18 - Compare the compounds in each set below and decide...Ch. 18 - Using standard entropy values, calculate rS for...Ch. 18 - About 5 billion kilograms of benzene, C6H6, are...Ch. 18 - Hydrogenation, the addition of hydrogen to an...Ch. 18 - Is the combustion of ethane, C2H6, product-favored...Ch. 18 - Prob. 38GQCh. 18 - When vapors from hydrochloric acid and aqueous...Ch. 18 - Calculate S(system), S(surroundings), and...Ch. 18 - Methanol is now widely used as a fuel in race...Ch. 18 - The enthalpy of vaporization of liquid diethyl...Ch. 18 - Calculate the entropy change, rS, for the...Ch. 18 - Using thermodynamic data, estimate the normal...Ch. 18 - Prob. 45GQCh. 18 - When calcium carbonate is heated strongly, CO2 gas...Ch. 18 - Sodium reacts violently with water according to...Ch. 18 - Yeast can produce ethanol by the fermentation of...Ch. 18 - Elemental boron, in the form of thin fibers, can...Ch. 18 - Prob. 50GQCh. 18 - Prob. 51GQCh. 18 - Estimate the boiling point of water in Denver,...Ch. 18 - The equilibrium constant for the butane ...Ch. 18 - A crucial reaction for the production of synthetic...Ch. 18 - Calculate rG for the decomposition of sulfur...Ch. 18 - Prob. 56GQCh. 18 - A cave in Mexico was recently discovered to have...Ch. 18 - Wet limestone is used to scrub SO2 gas from the...Ch. 18 - Sulfur undergoes a phase transition between 80 and...Ch. 18 - Calculate the entropy change for dissolving HCl...Ch. 18 - Some metal oxides can be decomposed to the metal...Ch. 18 - Prob. 62ILCh. 18 - Prob. 63ILCh. 18 - Prob. 64ILCh. 18 - Titanium(IV) oxide is converted to titanium...Ch. 18 - Cisplatin [cis-diamminedichloroplatinum(II)] is a...Ch. 18 - Prob. 67SCQCh. 18 - Explain why each of the following statements is...Ch. 18 - Decide whether each of the following statements is...Ch. 18 - Under what conditions is the entropy of a pure...Ch. 18 - Prob. 71SCQCh. 18 - Consider the formation of NO(g) from its elements....Ch. 18 - Prob. 73SCQCh. 18 - The normal melting point of benzene, C6H6, is 5.5...Ch. 18 - Prob. 75SCQCh. 18 - For each of the following processes, predict the...Ch. 18 - Heater Meals are food packages that contain their...Ch. 18 - Prob. 78SCQCh. 18 - Prob. 79SCQCh. 18 - Prob. 80SCQCh. 18 - Iodine, I2, dissolves readily in carbon...Ch. 18 - Prob. 82SCQCh. 18 - Prob. 83SCQCh. 18 - Prob. 84SCQCh. 18 - Prob. 85SCQCh. 18 - Prob. 86SCQCh. 18 - The Haber-Bosch process for the production of...Ch. 18 - Prob. 88SCQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Actually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardHydrogen peroxide can be prepared in several ways. One method is the reaction between hydrogen and oxygen, another method is the reaction between water and oxygen. Calculate the AGxn of each reaction using values from the table of thermodynamic properties. (1) H₂(g) + O₂(g) → H₂0₂ (1) AGixn = (2) H₂O(l) + O₂(g) ⇒ H₂O₂ (1) AGixn = Which method requires less energy under standard conditions? reaction (1) reaction (2) kJ.mol-1 kJ.mol-¹arrow_forwardBalance each of the following reactions, and identify the type of reaction Al(s)+Fe2O3(s)Δ→Al2O3+Fe(l)arrow_forward
- At 400 °C, the ΔG°rxn for the oxidation of a monoatomic liquid element Z in the presence of O2(g) forming ZO(s) is -25.0 kJ per mol O2. In the compound ZO(s), Z has a +2 formal charge. Which of the following statements is CORRECT? ZO cannot be reduced back to Z at any temperature because reduction of ZO to Z has +ΔG. Z cannot be oxidized to ZO because Z is more stable than 20 at 400 °C or any T above it The oxidation of Z with O2 is exothermic. The oxidation of Z with O2 is marked by an increase in entropy.arrow_forwardWhen 1.14 g of S is burned in the presence of O2 to give SO2, 10.3 kJ is released. From this information write the balanced equation, inserting the AH value (in kJ per mole S) on the proper side of the equation.arrow_forwardThe thermite reaction is written below. Show that the heat released in this reaction is sufficient for the iron to be produced as molten metal. Find the enthalpy of formation of the overall reaction. Al(s) + Where: Al ΔΗ°F= 0 Al2O3 AHF -2076 Fe AHF 0 Fe2O3 AHF -745 Fe₂O3(s)- → Al₂O3(s) + Fe(1)arrow_forward
- Given: 2MNO(s) + O2(g) → 2MnO2(s) ArH = –269.6 kJ · mol-1arrow_forwardBromine monofluoride (BrF) disproportionates to bromine gas and bromine tri- and pentafluorides. Use the following to find ΔH°rxn for the decomposition of BrF to its elements 3BrF(g) →Br₂(g)+BrF₃(l) ΔH°rxn=-125.3 kJ 5BrF(g) →2Br₂(g)+BrF₅(l) ΔH°rxn=-166.1 kJ BrF₃(l)+F₂(g) →BrF₅(l) ΔH°rxn=-158.0 kJarrow_forwardCalculate the equilibrium constant (Kp) for the reaction at 25 degree C 2O3(g)—>3O2(g)arrow_forward
- consider the following equationarrow_forwardCan you help me with this?arrow_forward6. (a) How much does the free energy (kJ/mole) of 15 g of pure Cu change by adding 5 g of pure Zn at a temperature of 1100 degrees C? Assume an ideal solution, and that Go(Cu) = -1200 kJ/mole, and Go(Zn) = -2000 kJ/mole at this temperature. A(Cu) = 63.55, and A(Zn) = 65.39. b) By how much more does the system free energy change by adding 5 g of Ga to the mixture in part a)? A(Ga) = 69.7, and Go(Ga) = - 3000 kJ/mole. %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY