A uniform slender rod of length L is dropped onto rigid supports at A and B. Because support B is slightly lower than support A, the rod strikes A with a velocity
Fig. P17.111
(a)
Find the angular velocity of the rod and the velocity of its mass center immediately after the rod strikes support A.
Answer to Problem 17.111P
The angular velocity of the rod when mass center immediately after the rod strikes support A is
The velocity of the rod when mass center immediately after the rod strikes support A
Explanation of Solution
Given information:
The length of uniform slender rod is L.
The mass of uniform slender rod is m.
The initial velocity of bar before it strikes B is
Calculation:
Write the equation of centroidal moment of inertia
The impact is perfectly elastic at both A and B. Therefore, the coefficient of restitution is one
Write the impact condition for the given system after the rod strikes support A.
Here,
Write the equation of velocity of rod
Here,
Substitute
Consider the impulse and momentum principle.
Sketch the impulse and momentum diagram for the first impact at A of the bar as shown in Figure (1).
Here,
Refer Figure (1).
Take moment about A (positive sign in clockwise direction).
Substitute
Simplify the Equation:
Thus, the angular velocity of the rod and the velocity of its mass center immediately after the rod strikes support A is
Find the velocity of the rod when mass center immediately after the rod strikes support A using Equation (1).
Substitute
Thus, the velocity of the rod when mass center immediately after the rod strikes support A
(b)
Find the angular velocity of the rod and the velocity of its mass center immediately after the rod strikes support B.
Answer to Problem 17.111P
The angular velocity of the rod when mass center immediately after the rod strikes support B is
The velocity of the rod when mass center immediately after the rod strikes support B is
Explanation of Solution
Calculation:
Write the impact condition for the given system after the rod strikes support B.
Here,
Write the equation of velocity of rod
Here,
Substitute
Consider the impulse and momentum principle.
Sketch the impulse and momentum diagram for impact at B of the bar as shown in Figure (2).
Here,
Refer Figure (2).
Take moment about B (positive sign in clockwise direction).
Substitute
Thus, the angular velocity of the rod when mass center immediately after the rod strikes support B is
Find the velocity of the rod when mass center immediately after the rod strikes support B using Equation (2).
Substitute
Thus, the velocity of the rod when mass center immediately after the rod strikes support B
(c)
Find the angular velocity of the rod and the velocity of its mass center immediately after the rod strikes support A again.
Answer to Problem 17.111P
The angular velocity of the rod when mass center immediately after the rod strikes support A again is
The velocity of the rod when mass center immediately after the rod strikes support A again is
Explanation of Solution
Calculation:
Write the impact condition for the given system after the rod again strikes support A.
Here,
Write the equation of velocity of rod
Here,
Substitute
Consider the impulse and momentum principle.
Sketch the impulse and momentum diagram for second impact at A of the bar as shown in Figure (3).
Refer Figure (3).
Take moment about A (positive sign in clockwise direction).
Substitute
Thus, the angular velocity of the uniform slender rod after rod again strikes support A support B is
Find the velocity of rod at its mass center after the rod again strikes support A using Equation (3).
Substitute 0 for
Thus, the velocity of rod at its mass center after the rod again strikes support A is
Want to see more full solutions like this?
Chapter 17 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Mechanics of Materials (10th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Thermodynamics: An Engineering Approach
Elementary Surveying: An Introduction To Geomatics (15th Edition)
- 1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forwardA lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forward
- Knowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forwardFind the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY