Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.3, Problem 17.5IMD
To determine
Sketch impulse-momentum diagram that is needed to determine the angular velocity of the rod and the velocity of its mass center immediately after the cord becomes taut.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A square plate of side a and mass m supported by a ball-and-socket joint at A is rotating about the y axis with a constant angular velocity ω = ω 0 j when an obstruction is suddenly introduced at B in the xy plane. Assuming the impact at B to be perfectly plastic (e = 0), determine immediately after the impact (a ) the angular velocity of the plate, (b ) the velocity of its mass center G.
Problem 17.76
The 19.2-kg roll of paper has a radius of gyration k = 120 mm about an
axis passing through point A. It is pin supported at both ends by two
brackets AB as shown in (Eigure 1) The roll rests on the floor, for which the
coefficient of kinetic friction is 0.2. A horizontal force F-60 N is
applied to the end of the paper.
Figure
400 mm
300 mm/
C
<1 of 1
Part A
Determine the initial angular acceleration of the roll as the paper unrolls
Express your answer in radians per second squared to three significant figures. Enter positive value if the angular acceleration is clockwise and negative value if the
angular acceleration is counterclockwise.
VAE Ivec 3
a= 7.54
a
Previous Answers Request Answer
C QMNC ?
Submit
J
* Incorrect; Try Again; 3 attempts remaining
rad/s²
The double pulley shown has a weight of 35.0 lb and a centroidal radius of gyration
of 5.0 in. Cylinder A (25.0 lb) and block B (16 lb) are attached to cords that wrap
around pulleys in the manner shown. The coefficient of kinetic friction between
block B and the surface is 0.25. Knowing that the system is released from rest at
the position shown (h = 4 ft), determine the velocity of cylinder A when it strikes the
ground.
6 in.
A
h
10 in.
B
Chapter 17 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 17.1 - A round object of mass m and radius r is released...Ch. 17.1 - Prob. 17.2CQCh. 17.1 - Prob. 17.3CQCh. 17.1 - Prob. 17.4CQCh. 17.1 - Slender bar A is rigidly connected to a massless...Ch. 17.1 - A 200-kg flywheel is at rest when a constant 300...Ch. 17.1 - The rotor of an electric motor has an angular...Ch. 17.1 - Prob. 17.3PCh. 17.1 - Two disks of the same material are attached to a...Ch. 17.1 - Prob. 17.5P
Ch. 17.1 - PROBLEM 17.6
The flywheel of a punching machine...Ch. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - The 10-in.-radius brake drum is attached to a...Ch. 17.1 - Prob. 17.10PCh. 17.1 - Prob. 17.11PCh. 17.1 - Prob. 17.12PCh. 17.1 - Prob. 17.13PCh. 17.1 - The double pulley shown has a mass of 15 kg and a...Ch. 17.1 - Gear A has a mass of 1 kg and a radius of gyration...Ch. 17.1 - Prob. 17.16PCh. 17.1 - Prob. 17.17PCh. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - An adapted golf device attaches to a wheelchair to...Ch. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Two identical slender rods AB and BC are welded...Ch. 17.1 - Prob. 17.24PCh. 17.1 - Prob. 17.25PCh. 17.1 - Prob. 17.26PCh. 17.1 - Greek engineers had the unenviable task of moving...Ch. 17.1 - A small sphere of mass m and radius r is released...Ch. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W = 14 lb...Ch. 17.1 - Prob. 17.33PCh. 17.1 - A bar of mass m = 5 kg is held as shown between...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - The motion of the uniform rod AB is guided by...Ch. 17.1 - Prob. 17.37PCh. 17.1 - Prob. 17.38PCh. 17.1 - The ends of a 9-lb rod AB are constrained to move...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L = 1 m...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - 17.45 The uniform rods AB and BC weigh 2.4 kg and...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - Prob. 17.51PCh. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - Prob. 17.2IMDCh. 17.2 - Prob. 17.3IMDCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - A uniform 144-lb cube is attached to a uniform...Ch. 17.2 - Prob. 17.56PCh. 17.2 - Prob. 17.57PCh. 17.2 - Prob. 17.58PCh. 17.2 - Prob. 17.59PCh. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Each of the gears A and B has a mass of 675 g and...Ch. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - Prob. 17.64PCh. 17.2 - Prob. 17.65PCh. 17.2 - Show that, when a rigid body rotates about a fixed...Ch. 17.2 - Prob. 17.68PCh. 17.2 - A flywheel is rigidly attached to a 1.5-in.-radius...Ch. 17.2 - A wheel of radius r and centroidal radius of...Ch. 17.2 - Prob. 17.71PCh. 17.2 - 17.72 and 17.73 A 9-in.·radius cylinder of weight...Ch. 17.2 - 17.72 and 17.73 A 9-in.·radius cylinder of weight...Ch. 17.2 - Two uniform cylinders, each of mass m = 6 kg and...Ch. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - A bowler projects an 8.5-in.-diameter ball...Ch. 17.2 - Prob. 17.79PCh. 17.2 - A satellite has a total weight (on Earth) of 250...Ch. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - Prob. 17.83PCh. 17.2 - Prob. 17.84PCh. 17.2 - Prob. 17.85PCh. 17.2 - Prob. 17.86PCh. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - A 1.8-kg collar A and a 0.7-kg collar B can slide...Ch. 17.2 - Prob. 17.90PCh. 17.2 - A small 4-lb collar C can slide freely on a thin...Ch. 17.2 - Rod AB has a weight of 6 lb and is attached to a...Ch. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - The 6-lb steel cylinder A of radius r and the...Ch. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - Prob. 17.5IMDCh. 17.3 - Prob. 17.6IMDCh. 17.3 - At what height h above its center G should a...Ch. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - In Prob. 17.97, determine (a) the required...Ch. 17.3 - A 16-lb wooden panel is suspended from a pin...Ch. 17.3 - Prob. 17.100PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - Prob. 17.105PCh. 17.3 - A uniform slender rod AB is at rest on a...Ch. 17.3 - A bullet of mass m is fired with a horizontal...Ch. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L = 200 mm and...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - 17.113 The slender rod AB of length L = 1 m forms...Ch. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - Prob. 17.117PCh. 17.3 - Prob. 17.118PCh. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - Prob. 17.121PCh. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.124PCh. 17.3 - Block A has a mass m and is attached to a cord...Ch. 17.3 - Prob. 17.126PCh. 17.3 - 17.127 and 17.128Member ABC has a mass of 2.4 kg...Ch. 17.3 - 17.127 and 17.128Member ABC has a mass of 2.4 kg...Ch. 17.3 - Prob. 17.129PCh. 17.3 - Prob. 17.130PCh. 17.3 - A small rubber ball of radius r is thrown against...Ch. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - In a game of pool, ball A is rolling without...Ch. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - The 8-in.-radius brake drum is attached to a...Ch. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - The motion of the slender 250-mm rod AB is guided...Ch. 17 - Prob. 17.141RPCh. 17 - Disks A and B are made of the same material, are...Ch. 17 - Disks A and B are made of the same material, are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A slender rod of length l and weight W is pivoted at one end as shown. It is released from rest in a horizontal position and swings freely. (a ) Determine the angular velocity of the rod as it passes through a vertical position and determine the corresponding reaction at the pivot. (b ) Solve part a for W = 1.8 lb and l = 3 ft.arrow_forward3. (17.21) A collar at point C with a mass of 1 kg is rigidly attached at a distance d = 300 mm from the end of a uniform slender rod AB. The rod has a mass of 3 kg and has a length of L = 600 mm. Knowing that the rod is released from rest in the position shown, determine the angular velocity of the rod after it has rotated through 90°. Notes: Ignore rotation of the collar since its dimensions are negligible. The controidal moment of inertia of the rod is I = m[² 12 L d Position 1 Position 1 B B A Position 2 L A' ctivate Windowsarrow_forward5. Fig. 3 shows the overhead view of a uniform thin rod of length I and mass M that can rotate freely about a fixed axis on a horizontal surface. The rod is at rest initially with moment of inertia MI². A bullet of mass m is fired towards one end of the rod with initial velocity v. After piercing the rod, the bullet's velocity is reduced to v. The angular velocity of the rod after being shot through is ( ) 3mv А. 2ML 7mv В. 4ML overhead view mv C. MI Fig 3 D. 5mv 3MIarrow_forward
- A thin rectangular plate of weight 15 lb rotates about its vertical diagonal AB with an angular velocity V. Knowing that the z axis is perpendicular to the plate and that V is constant and equal to 5 rad/s, determine the angular momentum of the plate about its mass center G. B 12 in. 9 in. ANSWER : - (0.408 slug · ft²/s)i + (0.1398 slug · ft²/s)j.arrow_forwardA large 3-lb sphere with a radius r = 3 in. is thrown into a light basket at the end of a thin, uniform rod weighing 2 lb and length L= 10 in. as shown. Immediately before the impact, the angular velocity of the rod is 3 rad/s counterclockwise and the velocity of the sphere is 2 ft/s down. Assume the sphere sticks in the basket. Determine after the impact (a) the angular velocity of the bar and sphere, (b) the components of the reactions at A.arrow_forwardTwo panels A and B are attached with hinges to a rectangular plate and held by a wire as shown. The plate and the panels are made of the same material and have the same thickness. The entire assembly is rotating with an angular velocity w0 when the wire breaks. Draw the impulse–momentum diagram that is needed to determine the angular velocity of the assembly after the panels have come to rest against the plate.arrow_forward
- A 16-lb wooden panel is suspended from a pin support at A and is initially at rest. A 4-lb metal sphere is released from rest at B’ and falls into a hemispherical cup C’ attached to the panel at the same level as the mass center G. Assuming that the impact is perfectly plastic, determine the velocity of the mass center G of the panel immediately after the impact.arrow_forwardProblem (4) An 8-kg gear with a radius of 80 mm has a centroidal radius of gyration of 50 mm. A 5-kg slender rod AB is attached to the center of the gear while the pin at B is free to slide along the vertical slot (negligible friction). When 0 = 60°, the system is released from rest. Determine S0 mm (a) the velocity of the center of the gear when 6 = 15° (b) the velocity of pin B when 0 = 15°. 320 imm BOarrow_forwardA 1.6-kg tube AB can slide freely on rod DE which in turn can rotate freely in a horizontal plane. Initially the assembly is rotating with an angular velocity of magnitude w = 5 rad/s and the tube is held in position by a cord. The moment of inertia of the rod and bracket about the vertical axis of rotation is 0.30 kg.m2 and the centroidal moment of inertia of the tube about a vertical axis is 0.0025 kg.m2If the cord suddenly breaks, determine (a) the angular velocity of the assembly after the tube has moved to end E, (b) the energy lost during the plastic impact at E.arrow_forward
- A bullet of mass m is fired with a horizontal velocity v0 and at a height h = ½ R into a wooden disk of much larger mass M and radius R . The disk rests on a horizontal plane and the coefficient of friction between the disk and the plane is finite. (a) Determine the linear V1 and the angular velocity w1 of the disk immediately after the bullet has penetrated the disk. (b) Describe the ensuing motion of the disk and determine its linear velocity after the motion has become uniform.arrow_forwardThe mechanism shown is one of two identical mechanisms attached to the two sides of a 200-lb uniform rectangular door. Edge ABC of the door is guided by wheels of negligible mass that roll in horizontal and vertical tracks. A spring with a constant k is attached to wheel B in such a way that its tension is zero when 0 = 30°, Knowing that the door is released from rest in the position 0 = 45° and reaches the vertical position with an angular velocity of 0.6 rad/s, determine the spring constant k.arrow_forwardEnd A of the 8-kg uniform rod AB is attached to a collar that can slide without friction on a vertical rod. End B of the rod is attached to a ver- tical cable BC. If the rod is released from rest in the position shown, determine immediately after release (a) the angular acceleration of the rod, (b) the reaction at A. Please show clear diagrams.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY