A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in Fig. P17.68). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state. (a) Find the number of moles in the sample. Find (b) the temperature at point B, (c) the temperature at point C, and (d) the volume at point C. (e) Now consider the processes A → B, B → C, and C → A. Describe how to carry out each process experimentally. (f) Find Q, W, and ΔEint for each of the processes. (g) For the whole cycle A → B → C → A, find Q, W, and ΔEint.
Figure P17.68
(a)
Thenumber of mole in the sample.
Answer to Problem 68P
Thenumber of mole in the sample is
Explanation of Solution
Write the expression for theideal gas law,
Here,
Rewrite the above equation,
Conclusion:
Substitute
Therefore, the number of mole in the sample is
(b)
The temperature of the sample at point
Answer to Problem 68P
The temperature of the sample at point
Explanation of Solution
Write the expression for thetemperature of the sample at point
Here,
Conclusion:
Substitute
Therefore, the temperature of the sample at point
(c)
The temperature of the sample at point
Answer to Problem 68P
The temperature of the sample at point
Explanation of Solution
Write the expression for thetemperature of the sample at point
Here,
Conclusion:
Substitute
Therefore, the temperature of the sample at point
(d)
The volume of the sample at point
Answer to Problem 68P
The volume of the sample at point
Explanation of Solution
Write the expression for thevolume of the sample at point
Here,
Conclusion:
Substitute
Therefore, the volume of the sample at point
(e)
Explain the processes
Answer to Problem 68P
In the process
In the process
In the process
Explanation of Solution
In the process
Lock the piston in place and put the cylinder into an oven at the temperature of
Here the gas is getting heat gradually.
In the process
The sample is keep in the oven while the gas expand gradually and to lift a load on the piston as far as it can.
In the process
The cylinder is carry and back into the room temperature at
Here the gas is cooling gradually and contract without touching the piston.
Conclusion:
Therefore, in the process
In the process
In the process
(f)
The value of
Answer to Problem 68P
The value of
Explanation of Solution
For
Write the expression for theenergy transferred by heat,
Here,
Write the expression for the change in internal energy,
In this case,
For
Write the expression for the work done on the sample,
In this case,
For
Write the expression for the work done on the sample,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the value of
(g)
The value of
Answer to Problem 68P
The values of
Explanation of Solution
Write the expression for theenergy transferred by heat in the whole process
Write the expression for the work done for whole process,
Write the expression for the change in internal energy for whole process,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the values of
Want to see more full solutions like this?
Chapter 17 Solutions
Principles of Physics: A Calculus-Based Text
- Cylinder A contains oxygen (O2) gas, and cylinder B contains nitrogen (N2) gas. If the molecules in the two cylinders have the same rms speeds, which of the following statements is false? (a) The two gases haw different temperatures. (b) The temperature of cylinder B is less than the temperature of cylinder A. (c) The temperature of cylinder B is greater than the temperature of cylinder A. (d) The average kinetic energy of the nitrogen molecules is less than the average kinetic energy of the oxygen molecules.arrow_forwardConsider a gas filling two connected chambers that are separated by a removable barrier (Fig. P20.68). The gas molecules on the left (red) are initially at a higher temperature than the ones on the right (blue). When the barrier between the two chambers is removed, the molecules begin to mix and move from one chamber to the other. a. Describe what happens to the temperature in the left chamber and in the right chamber as time goes on, once the barrier is open. Discuss in terms of the mixing of the molecules from each gas. b. Describe what happens to the most probable speed and average speed in the left chamber and in the right chamber as time goes on, once the barrier is open. Do they increase or decrease by the same factor? Explain. FIGURE P20.68 Problems 68 and 69.arrow_forwardA 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.00 atm and a volume of 12.0 L to a final volume of 30.0 L. (a) What is the final pressure of the gas? (b) What are the initial and final temperatures? Find (c) Q, (d) Eint, and (e) W for the gas during this process.arrow_forward
- A 1.00-mol sample of hydrogen gas is heated at constant pressure from 300 K to 420 K. Calculate (a) the energy transferred to the gas by heat, (b) the increase in its internal energy, and (c) the work done on the gas.arrow_forwardHow many moles are there in (a) 0.0500 g of N2 gas (M = 28.0 g/mol)? (b) 10.0 g of CO2 gas (M = 44.0 g/mol)? (c) How many molecules are present in each case?arrow_forwardA detailed answer for question a and b would be very helpful for doublecheckingarrow_forward
- A)An ideal gas is confined to a container at a temperature of 330 K.What is the average kinetic energy of an atom of the gas? (Express your answer to two significant figures.) B)2.00 mol of the helium is confined to a 2.00-L container at a pressure of 11.0 atm. The atomic mass of helium is 4.00 u, and the conversion between u and kg is 1 u = 1.661 ××10−27 kg.Calculate vrmsvrms. (Express your answer to three significant figures.) C)A gold (coefficient of linear expansion α=14×10−6K−1α=14×10−6K−1 ) pin is exactly 4.00 cm long when its temperature is 180∘∘C. Find the decrease in long of the pin when it cools to 28.0∘∘C? (Express your answer to two significant figures.)arrow_forwardn = 3.9 moles of an ideal gas are pumped into a chamber of volume V = 0.125 m3. Part (a) The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas? Part (b) The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?arrow_forwardAn ideal monatomic gas cools from 455.0 K to 405.0 K at constant volume as 831 J of energy is removed from it. How many moles of gas are in the sample? The ideal gas constant is R = 8.314 J/mol K.arrow_forward
- A cylinder with initial volume V contains a sample of a gas at pressure p. On one end of the cylinder, piston is let free to move so that the gas slowly expands in such a way that its pressure is directly proportional to its volume. After the gas reaches the volume 3V and pressure 3p, the piston is pushed in so that the gas is compressed isobarically to its original volume V. The gas is then cooled isochorically until it returns to the original volume and pressure. Find the work W done on the gas during the entire process. VISUALIZE Show the process on a pV diagram. Note whether it happens to be one of the basic gas processes: isochoric, isobaric, or isothermal. SOLVE Calculate the work as the area under the pV curve either geometrically or by carrying out the integration: work done on the gas W REVIEW Check your signs. W> 0 when the gas is compressed. Energy is transferred from the environment to the gas. • W <0 when the gas expands. Energy is transferred from the gas to the…arrow_forward(a) A tank contains one mole of helium gas at a pressure of 6.35 atm and a temperature of 22.0°C. The tank (which has a fixed volume) is heated until the pressure inside triples. What is the final temperature of the gas? °C (b) A cylinder with a moveable piston contains one mole of helium, again at a pressure of 6.35 atm and a temperature of 22.0°C. Now, the cylinder is heated so that both the pressure inside and the volume of the cylinder double. What is the final temperature of the gas? °Carrow_forwardA cylinder with a movable piston holds 2.95 mol of argon at a constant temperature of 235 K. As the gas is compressed isothermally. its pressure increases from 101 kPa to 121 kPa. Find (a) the final volume of the gas,arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning