Concept explainers
(a)
The change in kinetic energy of the disk.
(a)
Answer to Problem 73P
The change in kinetic energy of the disk is
Explanation of Solution
Given info: The radius of copper disk is
Write the equation for change in kinetic energy of the disk.
Here,
Write the equation of conservation of
Substitute
Write the formula for initial moment of inertia
Here,
m is the mass of the disk.
r is the radius of disk.
t is the thickness of copper disk.
The density of copper is
Substitute
Write the equation of conservation of angular momentum to calculate the final angular speed of the disk.
Further solve the above equation to calculate the final angular speed of the disk.
Here,
The value of coefficient of linear expansion
Substitute
Substitute
Conclusion:
Therefore, the change in kinetic energy of the disk is
(b)
The change in internal energy of the disk.
(b)
Answer to Problem 73P
The change in internal energy of the disk is
Explanation of Solution
Given info: The radius of copper disk is
Write the equation to calculate the change in internal energy of the disk.
Here,
Q is the energy required to change the temperature of substance.
c is the specific heat of the copper disk.
Specific heat of copper disk is
Substitute
Conclusion:
Therefore, the change in internal energy of the disk is
(c)
The amount of radiated energy.
(c)
Answer to Problem 73P
The amount of radiated energy is
Explanation of Solution
Given info: The radius of copper disk is
Write the equation for change in kinetic energy of the disk to calculate the amount of radiated energy.
Here,
Substitute
Conclusion:
Therefore, the amount of radiated energy is
Want to see more full solutions like this?
Chapter 17 Solutions
Principles of Physics: A Calculus-Based Text
- A 28.4-kg solid aluminum cylindrical wheel of radius 0.41 m is rotating about its axel in frictionless bearings with an angular velocity of ω = 32.8 rad/s. If its temperature is then raised from 20.0◦C to 95.0◦C, what is the fractional change in ω?arrow_forwardA solar collector is placed in direct sunlight where it absorbs energy at the rate of 840 J/s for each square meter of its surface. The emissivity of the solar collector is e = 0.66. What equilibrium temperature does the collector reach? Assume that the only energy loss is due to the emission of radiation.arrow_forwardIn an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 11.8 oC. The temperature at the inside surface of the wall is 18.4 oC. The wall is 0.12 m thick and has an area of 7.6 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?arrow_forward
- Metal A is in thermal contact with another Metal B. The two metals have the same length and area. If the end of Metal A is held constant at 80°C and the opposite end (which is Metal B) is held at 300°C. What will be the temperature, in °C, at the junction? (Ka = 314 W/m K and Kb = 427 W/m K)arrow_forwardA space probe is far away from the Sun, or any other sources of energy. It is kept warm (so the electronics work) by waste heat from a radioactive source. The radioactive source emits energy at a rate of 625W. The space probe can be modelled as a uniform sphere of metal. The radius is 1.3m, and the metal has a high thermal conductivity, so the probe is at a uniform temperature. The coefficient of linear expansion for this metal is 2.3 × 10-5 K-¹. 8. Suppose that the probe emits as a blackbody (with e = 1). What is the equilibrium temperature of the space probe? (a) 30K (b) 90K (c) ***150K (d) 240K (e) 320K 9. Suppose that the space probe is currently at temperature 200K, and it was launched from Earth at a temperature of 300K. By how much has the probe's volume decreased relative to the size at launch? (a) 2.1 x 10-2m³ (b) 4.2 × 10-²m³ (c) ***6.3 × 10-²m³ (d) 8.5 × 10-2m³ (e) There is not enough information to determine this.arrow_forwardA 670 kg meteorite made up of mostly aluminum, approaches the Earth. The initial temperature of the meteorite is -15.0°C and moves with a speed of 14.0km/s. When the meteorite collides with the Earth, half of its energy goes to Earth while the rest causes an increase in the internal energy of the meteorite which causes a momentary elevation of its temperature. Determine the final temperature of the meteorite if all the aluminum turns into gas. Assume the specific heat capacity for the liquid and gaseous aluminum is 1.17 X103J/kg* oC.arrow_forward
- A 200g copper bowl contains 100 g of wate, both at 25 degrees celsius. A very hot 300 g copper cylinder is dropped into the water. The final temperature of the system is 100 degrees celsius. Neglect energy transfer with the environment. The specific heat of water = 4186 J/kg. K and that of copper = 386J/kg. K. How much energy is transferred to the copper bowl as heat?arrow_forwardThe air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.arrow_forwardIn a solar water heater, energy from the Sun is gathered by water that circulates through tubes in a rooftop collector. The solar radiation enters the collector through a transparent cover and warms the water in the tubes; this water is pumped into a holding tank. Assume that the efficiency of the overall system is 12.0% (that is, 88% of the incident solar energy is lost from the system). What collector area is necessary to raise the temperature of 450 L of water in the tank from 19°C to 36°C in 2.5 h when the intensity of incident sunlight is 480 W/m2? The specific heat of water is 4186 J/kg-K. The density of water is 1.00 g/cm. 13 Number Unitsarrow_forward
- Liquid helium is stored at its boiling-point temperature of 4.2 K in a spherical container (r= 0.30 m). The container is a perfect blackbody radiator. The container is surrounded by a spherical shield whose temperature is 89 K. A vacuum exists in the space between the container and the shield. The latent heat of vaporization for helium is 2.1 x 104 J/kg. What mass of liquid helium boils away through a venting valve in one hour? i 0.34 kgarrow_forwardAn unknown substance has a mass of 0.125 kg and an initial temperature of 98.0\deg C. The substance is then dropped into a calorimeter made of aluminum containing 0.285 kg of water initially at 30.0\deg C. The mass of the aluminum container is 0.150 kg, and the temperature of the calorimeter increases to a final equilibrium temperature of 32.0\deg C . Assuming no thermal energy is transferred to the environment, calculate the specific heat of the unknown substance. _J/kg. \deg Carrow_forwardOn a certain dry sunny day, a swimming pool’s temperature would rise by 1.35°C if not for evaporation. What fraction of the water must evaporate to remove precisely enough energy to keep the temperature constant? Water at 37°C has a latent heat of vaporization of Lv = 580 kcal/kg. m/M =arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning