- (a) The set of all points on the real line whose distance from zero is less than 3 can be described by the absolute value inequality | x | _____.
- (b) The set of all points on the real line whose distance from zero is greater than 3 can be described by the absolute value inequality | x | _____.
(a)
To fill: The blank in the statement “The set of all points on the real line whose distance from zero is less than 3 can be described by the absolute value inequality ____”.
Answer to Problem 4E
The complete statement is “The set of all points on the real line whose distance from zero is less than 3 can be described by the absolute value inequality
Explanation of Solution
Definition used:
The absolute value of a real number is defined as the distance of that number from zero (the origin) on a number line.
Calculation:
Since the distance of a number from zero on a number line is the absolute value of that number, the set of all points x on the real line whose distance from zero is less than 3 will be the set of all points on the number line, whose absolute value is less than 3.
That is,
Thus, the complete statement is “The set of all points on the real line whose distance from zero is less than 3 can be described by the absolute value inequality
(b)
To fill: The blank in the statement “The set of all points on the real line whose distance from zero is greater than 3 can be described by the absolute value inequality ____”.
Answer to Problem 4E
The complete statement is “The set of all points on the real line whose distance from zero is greater than 3 can be described by the absolute value inequality
Explanation of Solution
Since the distance of a number from zero on a number line is the absolute value of that number, the set of all points x on the real line whose distance from zero is greater than 3 will be the set of all points on the number line, whose absolute value is greater than 3.
That is,
Thus, the complete statement is “The set of all points on the real line whose distance from zero is greater than 3 can be described by the absolute value inequality
Chapter 1 Solutions
Precalculus - A Custom Text for UNLV
- (4) (8 points) (a) (2 points) Write down a normal vector n for the plane P given by the equation x+2y+z+4=0. (b) (4 points) Find two vectors v, w in the plane P that are not parallel. (c) (2 points) Using your answers to part (b), write down a parametrization r: R² — R3 of the plane P.arrow_forward(2) (8 points) Determine normal vectors for the planes given by the equations x-y+2z = 3 and 2x + z = 3. Then determine a parametrization of the intersection line of the two planes.arrow_forward(3) (6 points) (a) (4 points) Find all vectors u in the yz-plane that have magnitude [u also are at a 45° angle with the vector j = (0, 1,0). = 1 and (b) (2 points) Using the vector u from part (a) that is counterclockwise to j, find an equation of the plane through (0,0,0) that has u as its normal.arrow_forward
- (1) (4 points) Give a parametrization c: R R³ of the line through the points P = (1,0,-1) and Q = (-2, 0, 1).arrow_forward4. Consider the initial value problem y' = 3x(y-1) 1/3, y(xo) = yo. (a) For what points (co, yo) does the IVP have a solution? (b) For what points (xo, yo) does the IVP have a unique solution on some open interval that contains 20? (c) Solve the IVP y' = 3x(y-1) 1/3, y(0) = 9 and determine the largest open interval on which this solution is unique.arrow_forwardFind the limit. (If the limit is infinite, enter 'oo' or '-o', as appropriate. If the limit does not otherwise exist, enter DNE.) lim X→ ∞ (✓ 81x2 - 81x + x 9x)arrow_forward
- 2) Compute the following anti-derivative. √1x4 dxarrow_forwardQuestion 3 (5pt): A chemical reaction. In an elementary chemical reaction, single molecules of two reactants A and B form a molecule of the product C : ABC. The law of mass action states that the rate of reaction is proportional to the product of the concentrations of A and B: d[C] dt = k[A][B] (where k is a constant positive number). Thus, if the initial concentrations are [A] = = a moles/L and [B] = b moles/L we write x = [C], then we have (E): dx dt = k(ax)(b-x) 1 (a) Write the differential equation (E) with separate variables, i.e. of the form f(x)dx = g(t)dt. (b) Assume first that a b. Show that 1 1 1 1 = (a - x) (b - x) - a) a - x b - x b) (c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous question. (d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact that the initial concentration of C is 0. (e) Now assume that a = b. Find x(t) assuming that a = b. How does this expression for x(t) simplify if it is known that [C] =…arrow_forward3) Find the volume of the solid that lies inside both the sphere x² + y² + z² cylinder x²+y² = 1. = 4 and thearrow_forward
- 1) Compute the following limit. lim x-0 2 cos(x) 2x² - x4arrow_forwardy = f(x) b C The graph of y = f(x) is shown in the figure above. On which of the following intervals are dy > 0 and dx d²y dx2 <0? I. aarrow_forward3 2 1 y O a The graph of the function f is shown in the figure above. Which of the following statements about f is true? о limb f(x) = 2 Olima f(x) = 2 о lima f (x) = lim x →b f(x) → f (x) = 1 limb. lima f(x) does not existarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning