Question 3 (5pt): A chemical reaction. In an elementary chemical reaction, single molecules of two reactants A and B form a molecule of the product C : ABC. The law of mass action states that the rate of reaction is proportional to the product of the concentrations of A and B: d[C] dt = k[A][B] (where k is a constant positive number). Thus, if the initial concentrations are [A] = = a moles/L and [B] = b moles/L we write x = [C], then we have (E): dx dt = k(ax)(b-x) 1 (a) Write the differential equation (E) with separate variables, i.e. of the form f(x)dx = g(t)dt. (b) Assume first that a b. Show that 1 1 1 1 = (a - x) (b - x) - a) a - x b - x b) (c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous question. (d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact that the initial concentration of C is 0. (e) Now assume that a = b. Find x(t) assuming that a = b. How does this expression for x(t) simplify if it is known that [C] = 1/2 after 20 seconds?
Question 3 (5pt): A chemical reaction. In an elementary chemical reaction, single molecules of two reactants A and B form a molecule of the product C : ABC. The law of mass action states that the rate of reaction is proportional to the product of the concentrations of A and B: d[C] dt = k[A][B] (where k is a constant positive number). Thus, if the initial concentrations are [A] = = a moles/L and [B] = b moles/L we write x = [C], then we have (E): dx dt = k(ax)(b-x) 1 (a) Write the differential equation (E) with separate variables, i.e. of the form f(x)dx = g(t)dt. (b) Assume first that a b. Show that 1 1 1 1 = (a - x) (b - x) - a) a - x b - x b) (c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous question. (d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact that the initial concentration of C is 0. (e) Now assume that a = b. Find x(t) assuming that a = b. How does this expression for x(t) simplify if it is known that [C] = 1/2 after 20 seconds?
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter5: Inverse, Exponential, And Logarithmic Functions
Section: Chapter Questions
Problem 18T
Related questions
Question
![Question 3 (5pt): A chemical reaction. In an elementary chemical reaction,
single molecules of two reactants A and B form a molecule of the product C :
ABC. The law of mass action states that the rate of reaction is proportional
to the product of the concentrations of A and B:
d[C]
dt
= k[A][B]
(where k is a constant positive number). Thus, if the initial concentrations are
[A] =
= a moles/L and [B] = b moles/L we write x = [C], then we have
(E):
dx
dt
=
k(ax)(b-x)
1
(a) Write the differential equation (E) with separate variables, i.e. of the form
f(x)dx = g(t)dt.
(b) Assume first that a b. Show that
1
1
1
1
=
(a - x) (b - x)
-
a) a - x
b - x
b)
(c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous
question.
(d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact
that the initial concentration of C is 0.
(e) Now assume that a = b. Find x(t) assuming that a = b. How does this
expression for x(t) simplify if it is known that [C] = 1/2 after 20 seconds?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F43685a05-72bf-4819-84f1-719cb68e9c1a%2Ffa96f237-0009-4c37-95ea-7912b92a552d%2Fj8kllk_processed.png&w=3840&q=75)
Transcribed Image Text:Question 3 (5pt): A chemical reaction. In an elementary chemical reaction,
single molecules of two reactants A and B form a molecule of the product C :
ABC. The law of mass action states that the rate of reaction is proportional
to the product of the concentrations of A and B:
d[C]
dt
= k[A][B]
(where k is a constant positive number). Thus, if the initial concentrations are
[A] =
= a moles/L and [B] = b moles/L we write x = [C], then we have
(E):
dx
dt
=
k(ax)(b-x)
1
(a) Write the differential equation (E) with separate variables, i.e. of the form
f(x)dx = g(t)dt.
(b) Assume first that a b. Show that
1
1
1
1
=
(a - x) (b - x)
-
a) a - x
b - x
b)
(c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous
question.
(d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact
that the initial concentration of C is 0.
(e) Now assume that a = b. Find x(t) assuming that a = b. How does this
expression for x(t) simplify if it is known that [C] = 1/2 after 20 seconds?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning