
To review:
The deoxyribonucleic acid (DNA) molecule that denatures first on heating from the given two deoxyribonucleic acid (DNA) molecules, and the reason behind its early denaturation.
Introduction:
The deoxyribonucleic acid (DNA) molecule has a double helical structure that is stabilized by different forces. These forces include hydrophobic interactions, hydrogen bonds, base stacking, and electrostatic interactions.

Explanation of Solution
The second DNAmolecule denatures first because it has smaller number of guanine–cytosine (GC) base pairs, and thus less amount of GCcontent (37.64%).The GC content is measured by dividing the number of cytosine and guanine
The base stacking interactions in the second molecule are less than the interactions in the first molecule. The GC content for the first molecule is higher (56.25%), and the base stacking is stronger as well. A lower amount of heat energy is required to break down the hydrogen bonds and stacking interactions, in the second molecule, and it denatures earlier than the other DNAmolecule.
The base pairs in the deoxyribonucleic acid (DNA) molecule are joined by hydrogen bonds. There are 3 hydrogen bonds between guanine and cytosine while only 2 hydrogen bonds are present between adenine and thymine. The triple bond between guanine-cytosine is stronger than the double bond between adenine and thymine. More energy is required to denature the DNA molecule since ithas more guanine–cytosine base pairs.
It can be concluded that the second deoxyribonucleic acid molecule denatures first on heating because of comparatively weaker base stacking interactions and lower GCcontent.
Want to see more full solutions like this?
Chapter 17 Solutions
Biochemistry: The Molecular Basis of Life
- Draw the reaction between sphingosine and arachidonic acid. Draw out the full structures.arrow_forwardDraw both cis and trans oleic acid. Explain why cis-oleic acid has a melting point of 13.4°C and trans-oleic acid has a melting point of 44.5°C.arrow_forwardDraw the full structure of the mixed triacylglycerol formed by the reaction of glycerol and the fatty acids arachidic, lauric and trans-palmitoleic. Draw the line structure.arrow_forward
- Draw out the structure for lycopene and label each isoprene unit. "Where is lycopene found in nature and what health benefits does it provide?arrow_forwardWhat does it mean to be an essential fatty acid? What are the essential fatty acids?arrow_forwardCompare and contrast primary and secondary active transport mechanisms in terms of energy utilisation and efficiency. Provide examples of each and discuss their physiological significance in maintaining ionic balance and nutrient uptake. Rubric Understanding the key concepts (clearly and accurately explains primary and secondary active transport mechanisms, showing a deep understanding of their roles) Energy utilisation analysis ( thoroughly compares energy utilisation in primary and secondary transport with specific and relevant examples Efficiency discussion Use of examples (provides relevant and accurate examples (e.g sodium potassium pump, SGLT1) with clear links to physiological significance. Clarity and structure (presents ideas logically and cohesively with clear organisation and smooth transition between sections)arrow_forward
- 9. Which one of the compounds below is the major organic product obtained from the following reaction sequence, starting with ethyl acetoacetate? 요요. 1. NaOCH2CH3 CH3CH2OH 1. NaOH, H₂O 2. H3O+ 3. A OCH2CH3 2. ethyl acetoacetate ii A 3. H3O+ OH B C D Earrow_forward7. Only one of the following ketones cannot be made via an acetoacetic ester synthesis. Which one is it? Ph کہ A B C D Earrow_forward2. Which one is the major organic product obtained from the following reaction sequence? HO A OH 1. NaOEt, EtOH 1. LiAlH4 EtO OEt 2. H3O+ 2. H3O+ OH B OH OH C -OH HO -OH OH D E .CO₂Etarrow_forward
- what is a protein that contains a b-sheet and how does the secondary structure contributes to the overall function of the protein.arrow_forwarddraw and annotate a b-sheet and lable the hydrogen bonding. what is an example that contains the b-sheet and how the secondary structure contributes to the overall function of your example protein.arrow_forwardFour distinct classes of interactions (inter and intramolecular forces) contribute to a protein's tertiary and quaternary structures. Name the interaction then describe the amino acids that can form this type of interaction. Draw and annotate a diagram of the interaction between two amino acids.arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
- Biology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning





