Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 18P
(a)
To determine
The distance between the cliffs.
(b)
To determine
The time taken foe the arrival of fourth echo after third.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A boat is floating at rest in dense fog near a large cliff. The captain sounds ahorn at water level and the sound travels through the salt water (1470 m/s) and the air (340 m/s) simultaneously. The echo in the water (due to the cliff) takes 0.40 s to return. How much additional time will it take for the echo in the air to return?
Microbats use echolocation to navigate and hunt. They emit pulses of high frequency sound waves which reflect off obstacles and objects in their surroundings. By detecting the time delay between the emitted pulse and the return of the reflected pulse, a bat can determine the location of the object. Determine the time delay between the sending of a pulse and the return of its reflection from an object located 12.5 m away. Approximate the speed of the sound waves as 345 m/s.
A bat emits ultrasonic pulses and uses them to navigate and to locate flying insects. If these pulses are sent at a rate of 2 per second, what is the maximum distance a reflecting object can be if the reflected pulse is to be received by the bat before the next pulse is emitted? (The speed of sound in air is 344 m/s.)
Chapter 17 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 17.1 - If you blow across the top of an empty soft-drink...Ch. 17.3 - A vibrating guitar string makes very little sound...Ch. 17.3 - Increasing the intensity of a sound by a factor of...Ch. 17.4 - Consider detectors of water waves at three...Ch. 17.4 - You stand on a platform at a train station and...Ch. 17.4 - An airplane flying with a constant velocity moves...Ch. 17 - Prob. 1OQCh. 17 - Prob. 2OQCh. 17 - Prob. 3OQCh. 17 - What happens to a sound wave as it travels from...
Ch. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Prob. 11OQCh. 17 - Prob. 12OQCh. 17 - Prob. 13OQCh. 17 - Prob. 14OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Write an expression that describes the pressure...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - The power output of a certain public-address...Ch. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48APCh. 17 - Prob. 49APCh. 17 - Prob. 50APCh. 17 - Prob. 51APCh. 17 - Prob. 52APCh. 17 - Prob. 53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - Prob. 55APCh. 17 - Prob. 56APCh. 17 - Prob. 57APCh. 17 - Prob. 58APCh. 17 - Prob. 59APCh. 17 - Prob. 60APCh. 17 - Prob. 61APCh. 17 - Prob. 62APCh. 17 - Prob. 63APCh. 17 - Prob. 64APCh. 17 - Prob. 65APCh. 17 - Prob. 66APCh. 17 - Prob. 67APCh. 17 - Prob. 68APCh. 17 - Prob. 69APCh. 17 - Prob. 70APCh. 17 - Prob. 71CPCh. 17 - Prob. 72CPCh. 17 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA sound wave can be characterized as (a) a transverse wave, (b) a longitudinal wave, (c) a transverse wave or a longitudinal wave, depending on the nature of its source, (d) one that carries no energy, or (e) a wave that does not require a medium to be transmitted from one place to the other.arrow_forwardOn a particular day the speed of sound in air is 340 m/s. If a plane flies at a speed of 680 m/s, is its Mach number (a) 1.5, (b) 2.0, (c) 2.5, or (d) 2.7?arrow_forward
- Female Aedes aegypti mosquitoes emit a buzz at about 4.00102 Hz, whereas male A. aegypti mosquitoes typically emit a buzz at about 6.00102 Hz. As a female mosquito is approaching a stationary male mosquito, is it possible that he mistakes the female for a male because of the Doppler shift of the sound she emits? How fast would the female have to be traveling relative to the male for him to make this mistake? Assume the speed of sound in the air is 343 m/s.arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardRank the waves represented by the following functions from the largest to the smallest according to (i) their amplitudes, (ii) their wavelengths, (iii) their frequencies, (iv) their periods, and (v) their speeds. If the values of a quantity are equal for two waves, show them as having equal rank. For all functions, x and y are in meters and t is in seconds. (a) y = 4 sin (3x 15t) (b) y = 6 cos (3x + 15t 2) (c) y = 8 sin (2x + 15t) (d) y = 8 cos (4x + 20t) (e) y = 7 sin (6x + 24t)arrow_forward
- During a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forwardA siren mounted 011 the roof of a firehouse emits sound at a frequency of 900 Hz. A steady wind is blowing with a speed of 15.0 m/s. Taking the speed of sound in calm air to be 343 m/s. find the wavelength of the sound (a) upwind of the siren and (b) downwind of the siren. Firefighters are approaching the siren from various directions at 15.0 m/s. What frequency does a firefighter hear (c) if she is approaching from an upwind position so that site is moving in the direction in which the wind is blowing and (d) if she is approaching from a downwind position and moving against the wind?arrow_forwardA sound wave traveling in air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forward
- During a 4th of July celebration, an M80 firework explodes on the ground, producing a bright flash and a loud bang. The air temperature of the night air is TF=90.00F . Two observers see the flash and hear the bang. The first observer notes the time between the flash and the bang as 1.00 second. The second observer notes the difference as 3.00 seconds. The line of sight between the two observers meet at a right angle as shown below. What is the distance x between the two observers?arrow_forwardA flute has a length of 58.0 cm. If the speed of sound in air is 343 m/s, what is the fundamental frequency of the flute, assuming it is a tube closed at one end and open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz (d) 591 Hz (e) none of those answersarrow_forwardA source of sound vibrates with constant frequency. Rank the frequency of sound observed in the following cases from highest to the lowest. If two frequencies are equal, show their equality in your ranking. All the motions mentioned have the same speed, 25 m/s. (a) The source and observer are stationary. (b) The source is moving toward a stationary observer. (c) The source is moving away from a stationary observer. (d) The observer is moving toward a stationary source. (e) The observer is moving away from a stationary source.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY