Concept explainers
(a)
The speed of the compressional wave.
(a)
Answer to Problem 59AP
The speed of the compressional wave is
Explanation of Solution
Write the expression for compressional wave.
Here,
Conclusion:
Substitute,
Therefore, the speed of the compressional wave is
(b)
The time taken by the back end of the rod to come to stop its motion.
(b)
Answer to Problem 59AP
The time taken by the back end of the rod to come to stop its motion is
Explanation of Solution
Write the expression for the time taken by the signal to stop to reach at the back end.
Here,
Conclusion:
Substitute,
Therefore, the time taken by the back end of the rod to come to stop its motion is
(c)
The distance moved by the back end of the rod at time
(c)
Answer to Problem 59AP
The distance moved by the back end of the rod at time
Explanation of Solution
Let the velocity with which the back end of the rod moving be
Write the equation for distance moved by the back end of the rod.
Conclusion:
Substitute,
Therefore, the distance moved by the back end of the rod at time
(d)
The strain of the rod.
(d)
Answer to Problem 59AP
The strain of the rod is
Explanation of Solution
Strain defined as the change in dimension by original dimension.
Write the expression for strain.
Here,
Conclusion:
Substitute,
Therefore, the strain of the rod is
(e)
The stress of the rod.
(e)
Answer to Problem 59AP
The stress of the rod is
Explanation of Solution
Young’s modulus is the ratio of stress by strain. From the known values of young’s modulus and strain, stress can be determined.
Write the expression for the stress of the rod.
Conclusion:
Substitute,
Therefore, the stress of the rod is
(f)
The maximum impact speed of the rod.
(f)
Answer to Problem 59AP
The maximum impact speed of the rod is
Explanation of Solution
The expression for the speed of the wave is.
Even if the front end strikes on wall, the back end will be in motion, and the time taken for the forward motion is.
Substitute equation (VI) in (VII).
The distance traveled at time
The strain of the rod is.
Substitute, equation (VIII) in (IX).
Substitute, equation (VIII) in (X).
The stress of the rod is.
Substitute, equation (XI) in (XII).
From equation (XIII) the expression for maximum speed, if the above stress is less than the yield stress is.
Conclusion:
Therefore, the maximum impact speed of the rod is
Want to see more full solutions like this?
Chapter 17 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Please help me with this physics problemarrow_forwardIn a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning