Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 8P
(a)
To determine
The effect on the speed of the wave when it moves through air at
(b)
To determine
The effect on the frequency of the sound wave when it moves through the air at
(c)
To determine
The effect on the wavelength of the sound wave when the it moves through air at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sound waves travel at roughly 340 m/s at room temperature. The minimum hearing range of a human is 20Hz. a) What is the wavelength of this wave? b) Could this wavelength fit inside the dimensions of Room 411( room dimensions are roughly 11.5 m x 8.7 m)? Justify your answer with sound reasoning
Sound waves travel at roughly 340 m/s at room temperature. The minimum hearing range of a human is 20Hz. a) What is the wavelength of this wave? b) Could this wavelength fit inside the dimensions of Room 411( room dimensions are roughly 11.5 m x 8.7 m)? Justify your answer with sound reasoning (pun intended :-))
A water wave has a frequency of 5.0 Hz and a wavelength of 4.0 m.
(a) What is the period of these waves?
(b) What is the wave velocity?
m/s
Chapter 17 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 17.1 - If you blow across the top of an empty soft-drink...Ch. 17.3 - A vibrating guitar string makes very little sound...Ch. 17.3 - Increasing the intensity of a sound by a factor of...Ch. 17.4 - Consider detectors of water waves at three...Ch. 17.4 - You stand on a platform at a train station and...Ch. 17.4 - An airplane flying with a constant velocity moves...Ch. 17 - Prob. 1OQCh. 17 - Prob. 2OQCh. 17 - Prob. 3OQCh. 17 - What happens to a sound wave as it travels from...
Ch. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Prob. 11OQCh. 17 - Prob. 12OQCh. 17 - Prob. 13OQCh. 17 - Prob. 14OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Write an expression that describes the pressure...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - The power output of a certain public-address...Ch. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48APCh. 17 - Prob. 49APCh. 17 - Prob. 50APCh. 17 - Prob. 51APCh. 17 - Prob. 52APCh. 17 - Prob. 53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - Prob. 55APCh. 17 - Prob. 56APCh. 17 - Prob. 57APCh. 17 - Prob. 58APCh. 17 - Prob. 59APCh. 17 - Prob. 60APCh. 17 - Prob. 61APCh. 17 - Prob. 62APCh. 17 - Prob. 63APCh. 17 - Prob. 64APCh. 17 - Prob. 65APCh. 17 - Prob. 66APCh. 17 - Prob. 67APCh. 17 - Prob. 68APCh. 17 - Prob. 69APCh. 17 - Prob. 70APCh. 17 - Prob. 71CPCh. 17 - Prob. 72CPCh. 17 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardA sinusoidal wave travelling in the positive x-direction is shown below. It has a frequency of3.00 Hz. Assume the diagram represents the wave at t = 0. Find the followinga) write a general expression for the wave function.b) amplitude (A)c) period (T)d) angular frequency (ω)e) wave number (k)f) wavelength (λ)g) speed of the wave (v).h) phase constant (ϕ).i) what is the value of the wavefunction when t = 1 sec and x = 25cm?arrow_forwardThe equation of a plane sound wave is, y(x, t) = 6.0 × 10-6 sin(5.7x – 1500t). Find the frequency, the wavelength and the velocity of the wave. Compare the wavelength with the amplitude of the oscillations and the wave velocity with the amplitude of the velocity of the oscillations. What is the phase shift between the oscillations of two points 30.0 cm apart in the direction of the sound wave?arrow_forward
- A wave is modeled by the wave function: y (x, t) = A sin [ 2π/0.1 m (x - 12 m/s*t)] 1. Find the wavelength, wave number, wave velocity, period and wave frequency. 2. Construct on the computer, in the same graph, the dependence of y (x, t) from x on t = 0 and t = 5 s and the amplitude is A= 1.3m 3. After constructing the graph, make the appropriate interpretations and comments from the result that you got graphically. 4. How much is the wave displaced during the time interval from t = 0 to t = 5 s? Does it match this with the graph results? Justify your answer. Is the material transported long wave displacement? If yes, how much material is transported over time interval from t = 0 to t = 5 s? Comment on your answer. We now consider two sound waves with different frequencies which have to the same amplitude. The wave functions of these waves are as follows: y1 (t) = A sin (2πf1t) y2 (t) = A sin (2πf2t) 5. Find the resultant wave function analytically. 6. Study how the resulting wave…arrow_forwardTwo people are talking at a distance of 2.0 m from where you are and you measure the sound intensity as 1.5 x10-7 W/m2. Another student is 8.0 m away from the talkers. What sound intensity does the other student measure? Select one: O a. 3.5 x 10-10 W/m2 O b. 6.2 x 10-8 W/m2 O c. 4.7 x 10-7 W/m2 O d. 1.7 x 10-11 W/m2 O e. 9.4 x 10-9⁹ W/m2arrow_forwardPlease asaparrow_forward
- Scientists in a laboratory produce a sound wave in a simulated environment (air) with a velocity of 416 m/s. What is the temperature (in kelvins) of the environment?arrow_forwardYou are hiking along a trail in a wide, dry canyon where the outdoor temperature is T=28.5 degrees celsius. To determine how far you are away from the canyon wall you yell "hello" and hear the echo t=3.05s later. a) calculate the speed of sound in the valley in meters per second, assuming the speed at 0 degrees celsius is 332 m/s b) how far are you from the canyon wall, in meters? c) if you stood at the same point on a cold morning where the temperature was T2= -1.5 degrees C, how long would it have taken for you to hear the echo, in seconds?arrow_forwardThe two successive harmonic frequencies of a 0.45 m long sound pipe are 929 Hz and 1300 Hz. a) Is the pipe open at both ends or only at one end? b) What is the propagation speed of the wave?arrow_forward
- This figure shows a sinusoidal wave that is traveling from left to right, in the +x-direction. Assume that it is described by a frequency of 34.0 cycles per second, or hertz (Hz). N 3.00 cm (a) What is the wave's amplitude (in cm)? cm (b) What is the wavelength (in cm)? 4.82 cm cmarrow_forwardA wave has a frequency of 66 Hz and a wavelength of 1.1 meters. What is the speed of this wave?arrow_forwardWrite a wave function describing the wave.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY