Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 17.6P
Earthquakes at fault lines in the Earth’s crust create seismic waves, which are longitudinal (P waves) or transverse (S waves). The P waves have a speed of about 7 km/s. Estimate the average bulk modulus of the Earth’s crust given that the density of rock is about 2 500 kg/m3.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Earthquakes at fault lines in Earth’s crust create seismic waves, which are longitudinal (P - waves) or transverse (S - waves). The P-waves have a speed of about 7 km/s. Estimate the average bulk modulus of Earth’s crust given that the density of rock is about 2500 kg/m3.
Earthquakes at fault lines in Earth's crust create seismic waves, which are longitudinal (P-waves) or transverse (S-waves). The P-waves have a speed of about 8 km/s. Estimate the average bulk modulus of Earth's crust given that the density of rock is about 2,100 kg/m3. Pa
Earthquakes at fault lines in Earth’s crust create seismic waves, which are longitudinal (P-waves) or transverse (S-waves). The P-waves have a speed of about 7 km/s. Estimate the average bulk modulus of Earth’s crust given that the density of rock is about 2 500 kg/m
Chapter 17 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 17 - If you blow across the top of an empty soft-drink...Ch. 17 - A vibrating guitar string makes very little sound...Ch. 17 - Increasing the intensity of a sound by a factor of...Ch. 17 - Consider detectors of water waves at three...Ch. 17 - You stand on a platform at a train station and...Ch. 17 - An airplane flying with a constant velocity moves...Ch. 17 - Table 17.1 shows the speed of sound is typically...Ch. 17 - Prob. 17.2OQCh. 17 - As you travel down the highway in your car, an...Ch. 17 - What happens to a sound wave as it travels from...
Ch. 17 - A church bell in a steeple rings once. At 300 m in...Ch. 17 - If a 1.00-kHz sound source moves at a speed of...Ch. 17 - Prob. 17.7OQCh. 17 - Assume a change at the source of sound reduces the...Ch. 17 - A point source broadcasts sound into a uniform...Ch. 17 - Suppose an observer and a source of sound are both...Ch. 17 - Prob. 17.11OQCh. 17 - With a sensitive sound-level meter, you measure...Ch. 17 - Doubling the power output from a sound source...Ch. 17 - Of the following sounds, which one is most likely...Ch. 17 - How can an object move with respect to an observer...Ch. 17 - Older auto-focus cameras sent out a pulse of sound...Ch. 17 - A friend sitting in her cat far down the toad...Ch. 17 - How can you determine that the speed of sound is...Ch. 17 - Prob. 17.5CQCh. 17 - You are driving toward a cliff and honk your horn....Ch. 17 - The radar systems used by police to detect...Ch. 17 - The Tunguska event. On June 30, 1908, a meteor...Ch. 17 - A sonic ranger is a device that determines the...Ch. 17 - A sinusoidal sound wave moves through a medium and...Ch. 17 - As a certain sound wave travels through the air,...Ch. 17 - Write an expression that describes the pressure...Ch. 17 - An experimenter wishes to generate in air a sound...Ch. 17 - Calculate the pressure amplitude of a 2.00-kHz...Ch. 17 - Earthquakes at fault lines in the Earths crust...Ch. 17 - A dolphin (Fig. P17.7) in seawater at a...Ch. 17 - A sound wave propagates in air at 27C with...Ch. 17 - Ultrasound is used in medicine both for diagnostic...Ch. 17 - A sound wave in air has a pressure amplitude equal...Ch. 17 - Prob. 17.11PCh. 17 - A rescue plane flies horizontally at a constant...Ch. 17 - A flowerpot is knocked off a window ledge from a...Ch. 17 - In the arrangement shown in Figure P17.14. an...Ch. 17 - The speed of sound in air (in meters per second)...Ch. 17 - A sound wave moves down a cylinder as in Figure...Ch. 17 - A hammer strikes one end of a thick iron rail of...Ch. 17 - A cowboy stands on horizontal ground between two...Ch. 17 - Calculate the sound level (in decibels) of a sound...Ch. 17 - The area of a typical eardrum is about 5.00 X 10-5...Ch. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 17.23PCh. 17 - The sound intensity at a distance of 16 in from a...Ch. 17 - The power output of a certain public-address...Ch. 17 - A sound wave from a police siren has an intensity...Ch. 17 - A train sounds its horn as it approaches an...Ch. 17 - As the people sing in church, the sound level...Ch. 17 - The most soaring vocal melody is in Johann...Ch. 17 - Show that the difference between decibel levels 1...Ch. 17 - A family ice show is held at an enclosed arena....Ch. 17 - Two small speakers emit sound waves of' different...Ch. 17 - A firework charge is detonated many meters above...Ch. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 17.35PCh. 17 - Why is the following situation impossible? It is...Ch. 17 - An ambulance moving at 42 m/s sounds its siren...Ch. 17 - Prob. 17.38PCh. 17 - A driver travels northbound on a highway at a...Ch. 17 - Submarine A travels horizontally at 11.0 m/s...Ch. 17 - Review. A block with a speaker bolted to it is...Ch. 17 - Review. A block with a speaker bolted to it is...Ch. 17 - Expectant parents are thrilled to hear their...Ch. 17 - Why is the following situation impossible? At the...Ch. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - A supersonic jet traveling at Mach 3.00 at an...Ch. 17 - Prob. 17.48APCh. 17 - Some studies suggest that the upper frequency...Ch. 17 - Prob. 17.50APCh. 17 - Prob. 17.51APCh. 17 - Prob. 17.52APCh. 17 - Prob. 17.53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - An ultrasonic tape measure uses frequencies above...Ch. 17 - The tensile stress in a thick copper bar is 99.5%...Ch. 17 - Review. A 150-g glider moves at v1 = 2.30 m/s on...Ch. 17 - Consider the following wave function in SI units:...Ch. 17 - Prob. 17.59APCh. 17 - Prob. 17.60APCh. 17 - To measure her speed, a skydiver carries a buzzer...Ch. 17 - Prob. 17.62APCh. 17 - Prob. 17.63APCh. 17 - Prob. 17.64APCh. 17 - A police car is traveling east at 40.0 m/s along a...Ch. 17 - The speed of a one-dimensional compressional wave...Ch. 17 - Prob. 17.67APCh. 17 - Three metal rods are located relative to each...Ch. 17 - Prob. 17.69APCh. 17 - A siren mounted 011 the roof of a firehouse emits...Ch. 17 - Prob. 17.71CPCh. 17 - In Section 16.7, we derived the speed of sound in...Ch. 17 - Equation 16.40 states that at distance r away from...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The refractive index of a human cornea is 1.40. If 550-nm light strikes a cornea at incidence angle 25, find (a...
Essential University Physics: Volume 2 (3rd Edition)
How is the charging time for a capacitor correlated with the initial current? That is, if the initial current i...
Matter and Interactions
A device for training astronauts and jet fighter pilots is designed to rotate the trainee in a horizontal circl...
Physics for Scientists and Engineers with Modern Physics
Order of Magnitude Estimate. Mathematical Insight 1.3 defines order of magnitude estimates, and in the text we ...
The Cosmic Perspective (9th Edition)
The Rankine temperature scale (abbreviatedR) uses the same size degrees as Fahrenheit, but measured up from abs...
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. For the arrangement shown in Figure P14.60, the inclined plane and the small pulley are frictionless; the string supports the object of mass M at the bottom of the plane; and the string has mass m. The system is in equilibrium, and the vertical part of the string has a length h. We wish to study standing waves set up in the vertical section of the string. (a) What analysis model describes the object of mass M? (b) What analysis model describes the waves on the vertical part of the string? (c) Find the tension in the string. (d) Model the shape of the string as one leg and the hypotenuse of a right triangle. Find the whole length of the string. (e) Find the mass per unit length of the string. (f) Find the speed of waves on the string. (g) Find the lowest frequency for a standing wave on the vertical section of the string. (h) Evaluate this result for M = 1.50 kg, m = 0.750 g, h = 0.500 m, and θ = 30.0°. (i) Find the numerical value for the lowest frequency for a standing wave on the sloped section of the string. Figure P14.60arrow_forwardReview. Consider the apparatus shown in Figure P14.68a, where the hanging object has mass M and the string is vibrating in its second harmonic. The vibrating blade at the left maintains a constant frequency. The wind begins to blow to the right, applying a constant horizontal force on the hanging object. What is the magnitude of the force the wind must apply to the hanging object so that the string vibrates in its first harmonic as shown in Figure 14.68b? Figure P14.68arrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forward
- An aluminum rod is clamped one-fourth of the way along its length and set into longitudinal vibration by a variable-frequency driving source. The lowest frequency that produces resonance is 4 400 Hz. The speed of sound in an aluminum rod is 5 100 m/s. Determine the length of the rod.arrow_forwardA string with a mass m = 8.00 g and a length L = 5.00 m has one end attached to a wall; the other end is draped over a small, fixed pulley a distance d = 4.00 m from the wall and attached to a hanging object with a mass M = 4.00 kg as in Figure P14.21. If the horizontal part of the string is plucked, what is the fundamental frequency of its vibration? Figure P14.21arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forward
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardReview. An aluminum wire is held between two clamps under zero tension at room temperature. Reducing the temperature, which results in a decrease in the wires equilibrium length, increases the tension in the wire. Taking the cross-sectional area of the wire to be 5.00 10-6 m2, the density to be 2.70 103 kg/m3, and Young's modulus to be 7.00 1010 N/m2, what strain (L/L.) results in a transverse wave speed of 100 m/s?arrow_forwardAs in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forward
- A block of mass M is connected to a spring of mass m and oscillates in simple harmonic motion on a frictionless, horizontal track (Fig. P12.69). The force constant of the spring is k, and the equilibrium length is . Assume all portions of the spring oscillate in phase and the velocity of a segment of the spring of length dx is proportional to the distance x from the fixed end; that is, vx = (x/) v. Also, notice that the mass of a segment of the spring is dm = (m/) dx. Find (a) the kinetic energy of the system when the block has a speed v and (b) the period of oscillation. Figure P12.69arrow_forwardThe tensile stress in a thick copper bar is 99.5% of its elastic breaking point of 13.0 1010 N/m2. If 500-Hz sound wave is transmitted through the material, (a) what displacement amplitude will cause the bar to break? (b) What is the maximum speed of the elements of copper at this moment? (c) What is the sound intensity in the bar?arrow_forwardA nylon string has mass 5.50 g and length L = 86.0 cm. The lower end is tied to the floor, and the upper end is tied to a small set of wheels through a slot in a track on which the wheels move (Fig. P14.56). The wheels have a mass that is negligible compared with that of the string, and they roll without friction on the track so that the upper end of the string is essentially free. At equilibrium, the string is vertical and motionless. When it is carrying a small-amplitude wave, you may assume the string is always under uniform tension 1.30 N. (a) Find the speed of transverse waves on the string. (b) The strings vibration possibilities are a set of standing-wave states, each with a node at the fixed bottom end and an anti-node at the free top end. Find the nodeantinode distances for each of the three simplest states. (c) Find the frequency of each of these states. Figure P14.56arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY